Research on Data Driven Mechanism and Performance Optimization of Knowledge Discovery in Digital Library

  • Li Jie ,
  • Bi Qiang ,
  • Xu Pengcheng ,
  • Mou Dongmei
Expand
  • 1. School of Management, Jilin University, Changchun 130022;
    2. School of Public Health, Jilin University, Changchun 130021

Received date: 2018-07-08

  Revised date: 2018-10-10

  Online published: 2019-02-05

Abstract

[Purpose/significance] Under the data-driven environment, exploring the data-driven mechanism and optimization scheme of knowledge discover platform of digital library is conducive to provide theoretical support for supply-side reform from the perspective of methodology. [Method/process] By means of the system dynamics method, the data-driven dynamic formation mechanism of digital library knowledge discovery is presented through simulation. From the perspective of performance optimization, the granular computing method is used to provide a feasible solution for its drive optimization. [Result/conclusion] The data driving factors that influence the knowledge discovery of digital library mainly include data dimension, semantic association dimension, visualization dimension and value dimension. From the perspective of the formation of dimensions and the role of performance, the data drive of digital library knowledge discovery is a dynamic system of spiral development, the key point of performance optimization lies in the exploitation degree of knowledge value of data. The knowledge granularity as the starting point to achieve its optimization can better improve the data-driven effect of digital library knowledge discovery, according to the experimental studies.

Cite this article

Li Jie , Bi Qiang , Xu Pengcheng , Mou Dongmei . Research on Data Driven Mechanism and Performance Optimization of Knowledge Discovery in Digital Library[J]. Library and Information Service, 2019 , 63(3) : 6 -13 . DOI: 10.13266/j.issn.0252-3116.2019.03.001

References

[1] WILLIAM S C. Data science:an action plan for expanding the technical areas of statistics[J]. International statistical review, 2010, 69(1):21-26.
[2] 李洁,毕强,张晗,等.数据驱动下数字图书馆知识发现的服务研究[J].情报资料工作,2018(4):6-14.
[3] TOLLE M, TANSLEY D, STEWART W, et al.The fourth paradigm:data-intensive scientific discovery[J]. Proceedings of the IEEE,2011,99(8):1334-1337.
[4] 陈臣,马晓亭.基于小数据的图书馆用户精准画像研究[J].情报资料工作,2018(5):57-61.
[5] 王世伟.数据驱动的时代特征与图情教育的创新转型[J].图书情报知识,2016(1):15-20.
[6] 王丹丹.数据驱动的馆藏建设趋势及实践案例[J].情报资料工作,2016(5):74-78.
[7] POPOV B, KIRYAKOV A, KIRILOV A, et al. KIM-semantic annotation platform[M]. Berlin:Springer, 2003:834-849.
[8] 闫晶,毕强,李洁.数字图书馆资源聚合质量评价指标构建[J].图书情报工作,2017,61(24):5-12.
[9] 朝乐门.数据科学[M].北京:清华大学出版社,2016.
[10] 刘士军,鹿旭东,崔立真.数据化企业制胜之道——数据驱动的创新[M].北京:电子工业出版社,2017.
[11] 王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2007(6):8-26.
[12] LIN T. Data mining and machine oriented modeling:a granular computing approach[J].Applied intelligence,2000,13(2):113-124.
[13] 王国胤,张清华.不同知识粒度下粗糙集的不确定性研究[J].计算机学报,2008(9):1588-1598.
[14] 林国平. 多粒度粗糙计算理论与方法研究[D].太原:山西大学,2016.
[15] 毕强,闫晶,李洁.大数据时代数字图书馆服务转型面临的新形势与新要求[J].情报理论与实践,2017,40(12):12-16,5.
Outlines

/