[Purpose/significance] This paper analyzes the deep-level reasons for the abnormality in the index distinction degree and the bias of data distribution in the science and technology evaluation and believes that this is a deviation between the evaluation index value and the evaluation attribute essentially. That is, the evaluation index value can not reflect the essence of the evaluation attribute well.[Method/process] This paper proposes a new method to reduce the deviation between evaluation index value and evaluation attribute which is logarithmic median standardization, and takes JCR2016 mathematics journal for an example to conduct an empirical analysis.[Result/conclusion] The results show that citation indexs are more likely to show deviations between evaluation index value and evaluation attribute. The deviation between evaluation index value and evaluation attribute can be determined from multiple perspectives, such as index connotation analysis, pass rate, dispersion coefficient, median maximum ratio, concentration index HHI, etc. The use of logarithmic median standardization can greatly reduce the deviation of evaluation index value and evaluation attribute.
Zhou Juanmei
,
Guo Qianghua
,
Wang Zuogong
,
Yu Liping
. Research on the Deviation Cause and Correction of Technology Evaluation Index Value and Evaluation Attribute[J]. Library and Information Service, 2018
, 62(22)
: 100
-108
.
DOI: 10.13266/j.issn.0252-3116.2018.22.012
[1] VINKLER P. Introducing the current contribution index for characterizing the recent, relevant impact of journals[J].Scientometrics,2008,79(2):409-420.
[2] SEGLEN P O. The skewness of science[J]. Journal of the American Society for Information Science,1992,43(9):628-638.
[3] BORNMANN L,MUTZ R,NEUHAUS C,et al. Citation counts for research evaluation:standards of good practice for analyzing bibliometric data and presenting and interpreting results[J]. Ethics in science and environmental politics(ESEP),2008,8(1):93-102.
[4] ADLER R, EWING J,TAYLOR P. Citation statistics[J]. Statistical science, 2009,24(1):1-26.
[5] VAN RAAN A F J. Measurement of central aspects of scientific research:performance, interdisciplinarity, structure[J]. Measurement,2005, 3(1):1-19.
[6] 苏为华. 多指标综合评价理论与方法问题研究[D]. 厦门:厦门大学,2002.
[7] DAVIS P M. Eigenfactor:does the principle of repeated improvement result in better estimates than raw citation counts[J]. Journal of the American Society for Information Science and Technology,2008,59(13):2186-2188.
[8] HIRSCH J. An index to quantify an individuals scientific research output[J].Proceedings of the National Academy of Sciences,2005,102(46):16569-16572.
[9] GLÄNZEL W. On the h-index-a mathematical approach to a new measure of publication activity and citation impact[J]. Scientometrics, 2006, 67(2):315-321.
[10] 俞立平,潘云涛,武夷山.高校社科类学术期刊分级管理存在的问题研究[J]. 情报杂志,2011(4):1-4.
[11] 文东茅,鲍旭明,傅攸.等级赋分对高考区分度的影响——对浙江"九校联考"数据的模拟分析[J].中国高教研究,2015(6):17-21,72.
[12] RUANE F, TOL R. Rational (successive) h-indices:an application to economics in the Republic of Ireland[J]. Scientometrics, 2008,75(2):395-405.
[13] 叶鹰. 对数f指数及其评价学意义[J].情报科学,2009,27(7):965-968.
[14] 付鑫金,方曙,许海云. 高校网络学术影响力实证研究[J].图书情报工作,2013,57(8):86-90.
[15] 许新军. 期刊hc指数与hd指数的比较分析[J].情报杂志,2015,34(4):59.
[16] 刘学之,杨泽宇,沈凤武,等.基于S型曲线的指标非线性标准化研究[J].统计与信息论坛,2018,33(2):17-21.
[17] 郭亚军,马凤妹,董庆兴. 无量纲化方法对拉开档次法的影响分析[J].管理科学学报,2011(5):19-28.
[18] 俞立平,潘云涛,武夷山. TOPSIS在期刊评价中的应用及在高次幂下的推广[J]. 统计研究,2012(12):96-101.
[19] 俞欣辰,潘有能. 学术期刊评价指标与评价结果的数据分布关系研究[J].情报杂志,2015,34(9):102-106.
[20] 俞立平,刘爱军. 指标数据分布与内部差距对学术期刊评价的影响——以JCR数学期刊为例[J].图书情报工作,2014,58(21):105-110.
[21] 詹敏,廖志高,徐玖平. 线性无量纲化方法比较研究[J].统计与信息论坛,2016(12):17-22
[22] UNDP. Human development report technical notes 2014[R/OL].[2018-06-01]. http://hdr.undp.org/sites/default/files/hdr14_technical_notes.pdf.
[23] 苏为华. 对数型功效系数法初探[J].统计研究,1993(3):63-66.
[24] 封婷. 综合评价中一种凹性指数型功效函数[J].统计与信息论坛,2016,31(7):16-21.
[25] 王连芬,张少杰.产业竞争力的测度指标体系设计[J].统计与决策,2008(10):49-50.
[26] HIRSCHMAN A O. The political economy of import-substituting industrialization in Latin America[J]. The quarterly journal of economics, 1968(1):1-32.