Analysis of User Influence and Identification of Key Opinion Leaders Based on Zhihu Platform

  • Guo Bo ,
  • Xu Haodi ,
  • Lei Shuiwang
Expand
  • 1. Meizu Telecom Equipment Co., Ltd. Beijing 100872;
    2. The Hong Kong University of Science and Technology, Hong Kong 999077;
    3. Xuzhou College of Industrial Technology Library, Xuzhou 221140

Received date: 2018-03-28

  Revised date: 2018-07-19

  Online published: 2018-10-20

Abstract

[Purpose/significance] With the rapid development of network technology, the platform of Zhihu has become a significant carrier to discuss social public topics and share knowledge as well as specified experience. Therefore, it is of importance for studying the communication channels of social network information to investigate the influence of key users and dig out the key opinion leaders in the Zhihu platform.[Method/process] By the means of improved PageRank and HITS algorithms, this study constructed a model for evaluating user influence based on the social network and question answering network of Zhihu platform, and identified the key users and opinion leaders accurately and objectively.[Result/conclusion] The experimental results show that PageRank and HITS algorithms in this paper could effectively extract several key opinion leaders with prominent features in Zhihu platform, the speed of the convergence is fast and with high reusability and mobility. By processing and analyzing the user data set of Zhihu platform, we successfully build a model for evaluating the user influence and mining key opinion leaders. Along with the verification of specified topics, it can be inferred that this model has enormous application value and commercial promotion prospect.

Cite this article

Guo Bo , Xu Haodi , Lei Shuiwang . Analysis of User Influence and Identification of Key Opinion Leaders Based on Zhihu Platform[J]. Library and Information Service, 2018 , 62(20) : 122 -132 . DOI: 10.13266/j.issn.0252-3116.2018.20.014

References

[1] 贾佳, 宋恩梅, 苏环. 社会化问答平台的答案质量评估——以"知乎","百度知道"为例[J]. 信息资源管理学报, 2013, 3(2):19-28.
[2] 宋好. 微博时代"意见领袖"特点探析[J]. 今传媒, 2010, 11(41):1.
[3] 王秀丽. 网络社区意见领袖影响机制研究——以社会化问答社区"知乎"为例[J]. 国际新闻界, 2014, 36(9):47-57.
[4] 罗晓光, 溪璐路. 基于社会网络分析方法的顾客口碑意见领袖研究[J]. 管理评论, 2012, 24(1):75-81.
[5] 彭兰. 网络中的人际传播[J]. 国际新闻界, 2001, 3(1):47-53.
[6] 曾润喜. 网络舆情管控工作机制研究[J]. 图书情报工作, 2009, 53(18):79-82.
[7] 刘志明, 刘鲁. 微博网络舆情中的意见领袖识别及分析[J]. 系统工程, 2011, 29(6):8-16.
[8] 郭博,赵隽瑞,孙宇. 社会化问答社区用户行为统计特性及其动力学分析:以知乎网为例[J]. 数据分析与知识发现, 2018,2(4):48-58.
[9] 郭博,李守光,王昊,等. 电商评论综合分析系统的设计与实现——情感分析与观点挖掘的研究与应用[J]. 数据分析与知识发现,2017,1(12):1-9.
[10] YOGANARASIMHAN H. Impact of social network structure on content propagation:a study using YouTube data[J]. Quantitative marketing and economics, 2012, 10(1):111-150.
[11] ZHAI Z, XU H, JIA P. Identifying opinion leaders in BBS[C]//Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Piscataway:IEEE Computer Society, 2008:398-401.
[12] 丁汉青, 王亚萍. SNS网络空间中"意见领袖"特征之分析——以豆瓣网为例[J]. 新闻与传播研究, 2010(3):82-91.
[13] 杨长春, 王天允, 叶施仁. 微博意见领袖影响力评价指标体系研究——基于媒介影响力视角[J]. 情报杂志, 2014, 33(8):178-183.
[14] KWAK H, LEE C, PARK H, et al. What is Twitter, a social network or a news media?[C]//Proceedings of the 19th international conference on World wide web. New York:ACM, 2010.
[15] XIE Y, HUANG T Z. A model based on cocitation for web information retrieval[J]. Mathematical problems in engineering, 2014:1-6.
[16] LANGVILLE A N, MEYER C D. Google's PageRank and beyond:the science of search engine rankings[M]. Princeton:Princeton University Press, 2011.
[17] 毛国君, 谢松燕, 胡殿军. PageRank模型的改进及微博用户影响力挖掘算法[J]. 计算机应用与软件, 2017, 34(5):28-32.
[18] MILLER J C, RAE G, SCHAEFER F, et al. Modifications of Kleinberg's HITS algorithm using matrix exponentiation and web log records[C]//Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. New York:ACM, 2001:444-445.
[19] LIN Y, LI H, LIU X, et al. Hot topic propagation model and opinion leader identifying model in microblog network[C]//Abstract and Applied Analysis. London:Hindawi Publishing Corporation, 2013.
[20] XING W, GHORBANI A. Weighted pagerank algorithm[C]//Conference on Communication Networks and Services Research.. Piscataway:IEEE, 2004:305-314.
[21] PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking:bringing order to the web[R]. Stanford:Stanford InfoLab, 1999.
[22] 熊涛, 何跃. 微博转发网络中意见领袖的识别与分析[J]. 现代图书情报技术, 2013(6):55-62.
[23] GUO B, WANG H, YU Z, et al. Detecting spammers in e-commerce website via spectrum features of user relation graph[C]//Advanced Cloud and Big Data (CBD), 2017 Fifth International Conference on. Piscataway:IEEE, 2017:324-330.
Outlines

/