Adaptation Model and Scene Recommendation for Information Acceptance in Mobile Library

  • Wang Fu ,
  • Bi Qiang ,
  • Xu Pengcheng ,
  • Bi Datian
Expand
  • School of Management, Jilin University, Changchun 130022

Received date: 2018-02-10

  Revised date: 2018-05-16

  Online published: 2018-08-05

Abstract

[Purpose/significance] In order to solve the contradiction between the information overload in the mobile library's scene information acceptance and the nationalization of the users' information demand, the coordination between the information service of the mobile library and the information demand of the users is realized.[Method/process] Based on the concept of scene service, the adaptation model of information acceptance of mobile library is constructed based on three dimensions of scene elements, user information behavior and information acceptance context factors, and the information acceptance process is designed.[Result/conclusion] Based on the adaptation model of mobile library information acceptance, collaborative filtering algorithm is applied to realize the effective recommendation of mobile library information acceptance scene.

Cite this article

Wang Fu , Bi Qiang , Xu Pengcheng , Bi Datian . Adaptation Model and Scene Recommendation for Information Acceptance in Mobile Library[J]. Library and Information Service, 2018 , 62(15) : 23 -30 . DOI: 10.13266/j.issn.0252-3116.2018.15.003

References

[1] 彭兰.场景:移动时代媒体的新要素[J].新闻记者,2015(3):20-27.
[2] 朱建良,王鹏欣,傅智建.场景革命:万物互联时代的商业新格局[M].北京:中国铁道出版社,2016.
[3] 李然.持续使用移动购物意愿的影响因素研究[D].成都:电子科技大学,2014.
[4] BAEK S J. Dynamic reconfiguration based on goal-scenario by adaptation strategy[J].Wireless personal communications, 2013, 73(2):309-318.
[5] 刘行军.微博用户及其信息传播影响因素研究[D].武汉:华中师范大学,2013.
[6] HÖPKEN W, FUCHS M, ZANKER M, et al. Context-based adaptation of mobile applications in tourism.[J]. Information technology & tourism, 2010, 12(2):175-195.
[7] 李佳琪.基于SOLOMO模式的移动图书馆服务创新研究[D].大连:辽宁师范大学,2016.
[8] ZHAO Q Y.Replica selection strategy based on similar scene recommendation in data grid environment[J]. Microelectronics & computer, 2012, 29(9):23-25.
[9] 王东波.图书馆场景服务的要素分析与内容实现[J].图书馆学研究,2017(1):60-64.
[10] 段淳林,闫济民.移动场景化:"互联网+"时代数字出版发展的新变革[J].中国出版,2016(5):54-56.
[11] VONGJATURAPAT S, CHAVEESUK S.Mobile technology acceptance for library information service:a theoretical model[C]//International conference on information society. Toronto:IEEE, 2013:290-292.
[12] CHAVEESUK S, VONGJATURAPAT S, CHOTIKAKAMTHORN N.Analysis of factors influencing the mobile technology acceptance for library information services:conceptual model[C]//International conference on information technology and electrical engineering. Yogyakarta:IEEE, 2013:18-24.
[13] WOPFNER M, BRICH J, HOCHDORFER S, et al.Mobile manipulation in service robotics:scene and object recognition with manipulator-mounted laser ranger[C]//ISR 2010(41st International Symposium on Robotics) and ROBOTIK 2010(6th German Conference on Robotics).Munich:IEEE, 2011:1-7.
[14] KHAN S A, BHATTI R. Application of social media in marketing of library and information services:a case study from Pakistan[J]. Webology, 2012, 9(1):1-8.
[15] CASTELLI D, PAGANO P. OpenDLib:a digital library service system[M]//Research and advanced technology for digital Libraries. Berlin:Springer, 2002:1-7.
[16] 王福.移动图书馆信息接受情境对用户信息行为的作用机理研究[J].国家图书馆学刊,2018,27(1):19-30.
[17] 王福,毕强.移动图书馆场景化信息接受情境重组研究[J].图书馆建设,2017(12):39-45.
[19] 吴声.场景革命:重构人与商业的连接[M].北京:机械工业出版社,2015.
[20] 马卓.数字图书馆微服务情境交互功能评估研究[D].长春:吉林大学,2017.
[21] 胡慕海,蔡淑琴,谭婷婷,等.面向移动数字图书馆的情境敏感型知识推荐研究[J].计算机科学, 2011, 38(8):92-95.
[22] ORSINI G, BADE D, LAMERSDORF W. CloudAware:empowering context-aware self-adaptation for mobile applications[J]. Transactions on emerging telecommunications technologies, 2017(18):e3210.
[23] PIAO J C,CHO C W,KIM C G, et al. An adaptive LOD setting methodology with OpenGL ES library on mobile devices[C]//International conference on it convergence and security. Beijing:IEEE, 2014:1-4.
[24] SAMA M, ELBAUM S, RAIMONDI F, et al.Context-aware adaptive applications:fault patterns and their automated identification[J]. IEEE transactions on software engineering, 2010, 36(5):644-661.
[25] LO D,MAOZ S. Mining scenario-based specifications with value-based invariants[C]//ACM SIGPLAN conference companion on object oriented programming systems languages and applications. New York:ACM, 2009:755-756.
[26] ZHOU K,VARADARAJAN K M,ZILLICH M, et al.Web mining driven semantic scene understanding and object localization[C]//IEEE international conference on robotics and biomimetics. Karon Beach:IEEE, 2011:2824-2829.
[27] AXELSSON J, HEES P V. New data for sandwich panels on the correlation between the SBI test method and the room corner reference scenario[J]. Fire & materials, 2005, 29(1):53-59.
[28] 刘健,毕强,刘庆旭,等.数字文献资源内容服务推荐研究——基于本体规则推理和语义相似度计算[J].现代图书情报技术,2016(9):70-77.
[29] ZHU H, CHEN E, XIONG H, et al. Mining mobile user preferences for personalized context-aware recommendation[J]. ACM transactions on intelligent systems & technology, 2014, 5(4):1-27.
[30] BIANCALANA C, GASPARETTI F,MICARELLI A, et al. An approach to social recommendation for context-aware mobile services[J]. ACM transactions on intelligent systems & technology, 2013, 4(1):1-31.
[31] PERERA C,JAYARAMAN P,ZASLAVSKY A, et al. Dynamic configuration of sensors using mobile sensor hub in internet of things paradigm[C]//IEEE eighth international conference on intelligent sensors, sensor networks and information processing. Melbourne:IEEE, 2013:473-478.
[32] 马洪丽.基于"云舟"的继续教育模式创新研究[J].继续教育研究,2016(7):83-84.
[33] 孙英月.基于"云舟"延伸高校图书馆知识空间服务研究[J].图书馆学刊,2017,39(2):8-12.
[34] MCLAUGHLIN M R,HERLOCKER J L.A collaborative filtering algorithm and evaluation metric that accurately model the user experience[C]//Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval. New York:ACM. 2004:329-336.
[35] 王福.移动图书馆情境与信息行为的生态适配模型构建[J].情报理论与实践,2017,40(11):80-85,95.
[36] YE W,LIN K,ZHANG L, et al. Optimized collaborative filtering algorithm based on item rating prediction[C]//International conference on instrumentation. Harbin:IEEE, 2013:648-652.
[37] SARWAR B,KARYPIS G,KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//International conference on World Wide Web. New York:ACM, 2001:285-295.
[38] 周鲲.基于用户相似度的协同过滤推荐算法研究[D].成都:西南交通大学,2016.
[39] SAID A, JAIN B J, ALBAYRAK S. Analyzing weighting schemes in collaborative filtering:cold start, post cold start and power users[C]//Proceedings of the 27th annual ACM symposium on applied computing. New York:ACM,2012:2035-2040.
Outlines

/