Research on the Architecture and Optimization Strategy of Policy Instrument Selection for the Development of Big Data in China

  • Li Qiao
Expand
  • School of Information Management, Wuhan University, Wuhan 430072

Received date: 2017-12-27

  Revised date: 2018-03-07

  Online published: 2018-06-05

Abstract

[Purpose/significance] This paper aims to explore the architecture of policy instrument selection that is built for achieving the goal of promoting the development of big data, reflect the questions existing in present policy instrument selection, and provide advice for optimizing policy instrument selection for promoting the development of big data. [Method/process] In this paper, a sample policy dataset that consists of 63 big data policies was created, which encoded the policy instruments hidden in sample policies by the method of content analysis. Then, a three-dimensional analysis framework that consists of basic resource, technique and field dimension was created, which is mapped to policy instrument codes. Finally, the sample policies were clustered by employing hierarchical clustering analysis from the perspective of field dimension. [Result/conclusion] The results of the analysis on policy instrument codes suggest that there is a lack of long-term planning in the selection of big data policy tools in China, the policy and policy tools are insufficient in coordination, and the policy tool selection is not abundant, the structure of policy instrument selection is unbalanced, and the key policies and policy instruments are hard to be identified because of the unclear demand expression. It recommends that China should enhance the strategy planning and development concept, focus on policy and policy instrument synergy, avoid public risks, build the demand-driven and question-oriented architecture of policy instrument selection, and develop innovative design and application of key policy instruments.

Cite this article

Li Qiao . Research on the Architecture and Optimization Strategy of Policy Instrument Selection for the Development of Big Data in China[J]. Library and Information Service, 2018 , 62(11) : 5 -15 . DOI: 10.13266/j.issn.0252-3116.2018.11.001

References

[1] 闫树. 加快大数据与实体经济深度融合[N]. 人民邮电, 2017-11-02(2).
[2] SCHNEIDER A, INGRAM H. Behavioral assumptions of policy tools[J]. The journal of politics, 1990, 52(2):510-529.
[3] BEMELMANS-VIDEC M L, RIST R C, VEDUNG E O. Carrots, sticks, and sermons:policy instruments and their evaluation[M]. New Brunswick:Transaction Publishers, 1998.
[4] 习近平主持中共中央政治局第二次集体学习[EB/OL].[2017-12-10].http://www.gov.cn/xinwen/2017-12/09/content_5245520.htm.
[5] HOOD C C, MARGETTS H Z. The tools of government in the digital age[M]. London:Palgrave Macmillan, 2007.
[6] ROTHWELL R. Government innovation policy:some past problems and recent trends[J]. Technological forecasting & social change, 1982, 22(1):3-30.
[7] VEDUNG E. Policy instruments:typologies and theories[M]//BEMELMANS-VIDEC M L, RIST R C, VEDUNG E O. Carrots, sticks and sermons:policy instruments & their evaluation.New Brunswick:Transaction Publishers,1998:21-58.
[8] 顾建光, 吴明华. 公共政策工具论视角述论[J]. 科学学研究, 2007, 25(1):47-51.
[9] 谢青, 田志龙. 创新政策如何推动我国新能源汽车产业的发展——基于政策工具与创新价值链的政策文本分析[J]. 科学学与科学技术管理, 2015(6):3-14.
[10] 赵筱媛, 苏竣. 基于政策工具的公共科技政策分析框架研究[J]. 科学学研究, 2007, 25(1):52-56.
[11] 张雅娴, 苏竣. 技术创新政策工具及其在我国软件产业中的应用[J]. 科研管理, 2001, 22(4):65-72.
[12] 黄萃, 苏竣, 施丽萍,等. 政策工具视角的中国风能政策文本量化研究[J]. 科学学研究, 2011, 29(6):876-882.
[13] 李健, 高杨, 李祥飞. 政策工具视域下中国低碳政策分析框架研究[J]. 科技进步与对策, 2013, 30(21):112-117.
[14] 孙建军, 裴雷, 周兆韬. 中国智慧城市建设政策工具的选择结构分析[J]. 图书与情报, 2016(6):33-40.
[15] 张勇进, 王璟璇. 主要发达国家大数据政策比较研究[J]. 中国行政管理, 2014(12):113-117.
[16] 彭知辉. 论政府在大数据发展中的作用:以大数据政策为视角[J]. 广东行政学院学报, 2017, 29(1):12-20.
[17] BERTOT J C, 郑磊, 徐慧娜,等. 大数据与开放数据的政策框架:问题、政策与建议[J]. 电子政务, 2014(1):6-14.
[18] 马海群, 蒲攀. 国内外开放数据政策研究现状分析及我国研究动向研判[J]. 中国图书馆学报, 2015, 41(5):76-86.
[19] 杨现民, 王榴卉, 唐斯斯. 教育大数据的应用模式与政策建议[J]. 电化教育研究, 2015(9):54-61.
[20] 朱彦, 徐俊, 朱玲,等. 主要发达国家医疗健康大数据政策分析[J]. 中华医学图书情报杂志, 2015, 24(10):13-17.
[21] 喻炜, 王凤生. 我国大数据产业政策研究——基于网络外部性与异质信息产品视角[J]. 当代经济科学, 2016, 38(3):72-79.
[22] 朝乐门, 马广惠, 路海娟. 我国大数据产业的特征分析与政策建议[J]. 情报理论与实践, 2016, 39(10):5-10.
[23] 黄如花, 温芳芳. 我国政府数据开放共享的政策框架与内容:国家层面政策文本的内容分析[J]. 图书情报工作, 2017, 61(20):12-25.
[24] 宋懿, 安小米, 马广惠. 美英澳政府大数据治理能力研究——基于大数据政策的内容分析[J]. 情报资料工作, 2018(1):12-20.
[25] 范梓腾, 谭海波. 地方政府大数据发展政策的文献量化研究——基于政策"目标-工具"匹配的视角[J]. 中国行政管理, 2017(12):46-53.
[26] 周京艳, 张惠娜, 黄裕荣,等. 政策工具视角下我国大数据政策的文本量化分析[J]. 情报探索, 2016(12):7-10.
[27] ELLIOTT O V. The tools of government:a guide to the new governance[M]. Oxford:Oxford University Press, 2002.
[28] HALL A D. Three-dimensional morphology of systems engineering[J]. IEEE transactions on systems science & cybernetics, 1969, 5(2):156-160.
[29] 党政机关公文处理工作条例[EB/OL].[2017-05-10]. http://www.gov.cn/gongbao/content/2013/content_2344541.htm.
[30] 周潇枭. 财科院摸底地方财政运行情况:去杠杆需防范"合成谬误"[EB/OL].[2017-12-21]. http://news.hexun.com/2017-12-20/192029183.html.
[31] 中国加强地方政府债务管理专家建言提高化解风险能力[EB/OL].[2017-12-21].http://dw.chinanews.com/chinanews/content.jsp?id=8405505&classify=zwsp&pageSize=6&language=chs.
[32] 全国金融工作会议在京召开[EB/OL].[2017-12-21]. http://www.gov.cn/xinwen/2017-07/15/content_5210774.htm.
[33] 政府工作报告(文字实录)——2018年3月5日在第十三届全国人民代表大会第一次会议上[EB/OL].[2018-03-07]. http://www.gov.cn/guowuyuan/2018-03/05/content_5271083.htm.
[34] 北京市人民政府办公厅. 北京市人民政府办公厅关于印发市发展改革委等部门制定的《北京市新增产业的禁止和限制目录(2015年版)》的通知[EB/OL].[2017-05-11]. http://www.mofcom.gov.cn/article/b/g/201601/20160101233176.shtml.
[35] 王瑞景, 刘琼. 浪潮孙丕恕:大数据助力实体经济[N]. 人民日报海外版, 2016-07-11(11).
Outlines

/