[Purpose/significance] The conventional rule of the scientific productivity time series of research output is based on the overall average output of the researchers. Is the rule behalf of all rules of the individual's output? The question is not only the important content of scientific researchrule study but also the important content of science policy evaluation.[Method/process] The study object of the empirical analysis is the national science foundation for distinguished young scholars of the earth science project, and the method is piecewise linear regression model.[Result/conclusion] The results show that the overall output rules are not consistent with the individual output rules, and about 31.7% of all the individual output rules are not consistent with the overall output rules.The model can be used to the scientific policy evaluation which can accurate the scientific evaluation in scientists individual.
Tian Renhe
,
Zhang Zhiqiang
,
Gao Zhi
. The Research of Individual Scientific Research Output Based on Piecewise Linear Regression Model——Empirical Study Based on the National Science Funds of Earth Science Project for Distinguished Young Scholar[J]. Library and Information Service, 2018
, 62(1)
: 106
-116
.
DOI: 10.13266/j.issn.0252-3116.2018.01.014
[1] SAMUEL F W,DANIEL B L, CLAUSET A. Gender, productivity, and prestige in computer science faculty hiring networks[C]//The 25th international conference on World Wide Web.Montana:International World Wide Web Conferences Steering Committee, 2016:1169-1179.
[2] COLE S, COLE J R. Scientific output and recognition a study in the operation of the reward system in science[J]. American sociological review, 1967, 32(3):377-390.
[3] MASSY W F, WILGER A K. Improving productivity:what faculty think about it:and it's effect on quality[J]. Change, 1995, 27(4):10-20.
[4] STEPHAN P E. The economics of science[J]. Journal of economic literature, 1996, 34(2):1199-1235.
[5] WAY S F, MORGAN A C, CLAUSET A, et al. The misleading narrative of the canonical faculty productivity trajectory[J]. Proceedings of the National Academy of Sciences, 2017, 114(44):216-223.
[6] LEHMAN H C. Men's creative production rate at different ages and in different countries[J]. The scientific monthly, 1954, 78(5):321-326.
[7] DENNIS W. Age and productivity among scientists[J]. Science, 1956, 123(3):724-725.
[8] BECKER G S. Human capital[M]. New York:Columbia University Press, 1975:43-50.
[9] ZUCKERMAN H A. Scientific elite[M]. New York:The Free Press, 1977:22-24.
[10] STERN N. Age and achievement in mathimatics:a case study in the sociology of science.[J]. Scoical studies of science, 1978(8):127-140.
[11] BAYER A E, DUTTON J E. Career age and research-professional activities of academic scientists:tests of alternative nonlinear models and some implications for higher education faculty policies[J]. The journal of higher education, 1977, 48(3):259-282.
[12] COLE S. Age and scientific performance[J]. American journal of sociology, 1979, 84(4):958-977.
[13] DIAMOD A M. The life-cycle research productivity of mathematicians and scientists[J]. Journal of gerontology, 1986, 41(4):520-525.
[14] HORNER K L,RUSHTON J P, VERNON P A. Relation between aging and research productivity of academic psychologists[J]. Psychology and aging, 1986(1):319-324.
[15] LEVIN S G, STEPHAN P E. Research productivity over the life cycle:evidence for academic scientists[J]. The American economic review, 1991, 81(1):114-132.
[16] SIMONTON D K. Creative productivity:a predictive and explanatory model of career trajectories and landmarks[J]. Psychological review, 1997, 104(1):66-89.
[17] SYMONDS M R,GEMMELL N J,BRAISHER T L, et al. Gender differences in publication output:towards an unbiased metric of research performance[J]. PLoS one, 2006,1(1):e127.
[18] SINATRA R,WANG D,DEVILLE P, et al. Quantifying the evolution of individual scientific impact[J]. Science, 2016,1(1):354.
[19] 国家自然科学基金委员会. 国家杰出青年科学基金在线[EB/OL].[2016-05-19]. http://www.nsfc.gov.cn/publish/portal0/tab313/.
[20] MOED H F. Measuring China's research performance using the Science Citation Index[J]. Scientometrics, 2002, 53(3):281-296.
[21] Web of Science核心合集帮助检索"授权号"字段[EB/OL].[2015-05-19]. http://images.webofknowledge.com/WOKRS521R5/help/zh_CN/WOS/hs_grant_number.html.
[22] 王斌会. 计量经济学模型及R语言应用[M]. 北京,广州:北京大学出版社,暨南大学出版社, 2015:61-67.
[23] WOOLDRIDGE J M. Introductory econometrics:a modern approach[M]. Boston:Cengage Learning, 2012:55-61.
[24] JAMES G,WITTEN D,HASTIE T, et al. An introduction to statistical learning with application R[M]. Berlin:Springer, 2013:39-42.
[25] 田人合,张志强, 郑军卫. 杰青基金地球科学项目资助效果及对策分析[J]. 情报杂志, 2016, 35(6):121-129.
[26] 张凤珠,马亮, 吴建南. 多元资助格局下的科学基金绩效评估:案例研究与学术履历分析[J]. 科学学与科学技术管理, 2011, 32(6):5-11.
[27] 张显峰, 李艳. 不能听任科研项目"一女多嫁"[N]. 科技日报, 2007-03-12(1).
[28] 王楚鸿. 科技论文"一文多注(标注)"现象分析[J]. 科学学研究, 2009, 27(5):711-715.
[29] 王贤文,刘则渊, 侯海燕. 全球主要国家的科学基金及基金论文产出现状:基于Web of Science的分析[J]. 科学学研究, 2010, 28(1):61-66.
[30] 安瑞,莫京, 任胜利. 我国英文科技论文中基金资助项目的数量与标注形式分析[J]. 编辑学报, 2009, 21(6):494-496.
[31] MCLAUGHLIN J A, JORDAN G B. Logic models:a tool for telling your programs performance story[J]. Evaluation and program planning, 1999, 22(1):66-72.
[32] CUMMINGS R. What if:the counterfactual in program evaluation[J]. Evaluation journal of Australasia, 2006, 6(2):6-15.
[33] 陈晨. 科学基金:国家创新体系的重要组成部分[N]. 科学时报, 2010-05-18(1).
[34] ARNOLD E, BALAZS K. Methods in the evaluation of publicly funded basic research[M]. London:Technopolis Group, 1998:57-60.
[35] CANIBANO C, BOZEMAN B. Curriculum vitae method in science policy and research evaluation:the state-of-the-art[J]. Research evaluation, 2009, 18(2):86-94.
[36] 吴建南,马亮, 郑永和. 科学基金国际评估的框架、内容与方法——基于多案例的跨国比较研究[J]. 科学学研究, 2010, 28(5):704-712.
[37] 张凤珠,马亮, 吴建南. 案例研究与国家自然科学基金绩效评估-医学科学部的实践[J]. 中国科学基金, 2010(4):239-242.