Construction of Evaluation Index System on the Digital Library Resource Aggregation Quality

  • Yan Jing ,
  • Bi Qiang ,
  • Li Jie
Expand
  • 1. School of Management, Jilin University, Changchun 130022;
    2. School of Economics and Management, Northeast Electric Power University, Jilin 132012

Received date: 2017-07-24

  Revised date: 2017-09-04

  Online published: 2017-12-20

Abstract

[Purpose/significance] Under the big data environment, resource aggregation becomes the effective way to meet the needs of users of digital libraries, but the research results of resource aggregation quality evaluation are few. From the perspective of meterage and the semantic study, this paper tries to deep the related theory, also to take effective measures in practice to guide the digital library to enhance the resource aggregation quality.[Method/process] Based on the literature at home and abroad, combined with the characteristics of big data era, from the perspective of meterage and semantic, it uses inductive deduction and system theory method to build the evaluation index system which includes 11 primary indicators and 26 secondary indicators. And then on the basis of the index system, the paper expounds the data collection assessment and indicators measurement.[Result/conclusion] The quality evaluation index of digital library resource aggregation is constructed, and the evaluation index system is explained in detail. The optimization strategy of digital library resource aggregation quality is put forward. The results show that under large data environment, through semantic and meterage method to build the quality evaluation index system of digital library resource aggregation, the theory basis is sufficient, and index system is complete and reasonable. There is certain value of theoretical innovation in the paper.

Cite this article

Yan Jing , Bi Qiang , Li Jie . Construction of Evaluation Index System on the Digital Library Resource Aggregation Quality[J]. Library and Information Service, 2017 , 61(24) : 5 -12 . DOI: 10.13266/j.issn.0252-3116.2017.24.001

References

[1] SINGH S,TANVEER J.Role of semantic relations in Hindi word sense disambiguation[J].Procedia computer science,2015(46):240-248.
[2] JU Y C,LEE K.Large margin learning of hierarchical semantic similarity for image classification[J].Computer vision and image understanding,2015(132):3-11.
[3] ALONSO I, CONTRERAS D.Evaluation of semantic similarity metrics applied to the automatic retrieval of medical documents:an UMLS approach[J].Expert systems with applications, 2016(44):386-399.
[4] KALLOUBI F, HABIB N, OMAR E.Microblog semantic context retrieval system based on linked open data and graph-based theory[J].Expert systems with applications, 2016(53):138-148.
[5] HASSAN H,HASSAN A, OSSAMA E.Unsupervised information extraction approach using graph mutual reinforcement[C]//Proceedings of empirical methods for natural language processing.Oxford:Pergamon-elsvier science LTD,2006:501-508.
[6] KUMAR K,REDDY A.A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method[J].Pattern recognition, 2016(58):39-48.
[7] ZHUO Z, ZHANG X, NIU W, et al.Improvingdata field hierarchical clustering using barnes-hut algorithm[J].Pattern recognition letters,2016,80(1):113-120.
[8] YILDIRIM A,ÖZDOAN C.Parallelwave cluster:a linear scaling parallel clustering algorithm implementation with application to very large datasets[J].Journal of parallel and distributed computing,2011(7):955-962.
[9] 李劲,程秀峰,宋红文.基于语义的馆藏资源深度聚合方法研究[J].情报科学,2013(11):100-103.
[10] 游毅,成全.试论基于关联数据的馆藏资源聚合模式[J].情报理论与实践,2013(1):109-114.
[11] 张玉峰,曾奕棠. 语义环境下馆藏资源深度聚合结果可视化框架研究[J].图书情报知识,2014(5):65-71.
[12] 何超, 张玉峰. 基于本体的馆藏数字资源语义聚合与可视化研究[J]. 情报理论与实践, 2013(10):73-76.
[13] 姜灵敏.信息资源聚合与数据挖掘[M].广州:华南理工大学出版社,2007:123-155.
[14] 李洁.基于SNA的馆藏数字资源知识聚合可视化研究[D].长春:吉林大学,2016.
[15] BHATTACHARYA U. Digital Information resources and digital information literacy:asymbiotic approach[J]. Information centre,2007(12):351-357.
[16] 王菲菲, 邱均平. 信息计量视角下的数字文献资源语义化模型研究[J]. 情报资料工作,2015(4):62-69.
[17] 曾群, 刘昊, 李瑞婻. 基于知识关联理论的数字图书馆信息资源聚合研究[J]. 图书馆学研究,2016(23):36-41.
[18] 邱均平, 余凡. 基于计量分析的馆藏资源语义化理论研究[J]. 中国图书馆学报, 2012,38(4):71-78.
[19] 王福. 数字图书馆资源聚合质量影响因素研究[J]. 情报理论与实践, 2016,39(12):86-90.
[20] 聂勇浩,罗景月.感知有用性、信任与社交网站用户的个人信息披露意愿[J].图书情报知识,2013(5):89-97.
[21] 楼雯.馆藏资源语义化理论体系研究[J].图书馆学研究,2015(2):35-40.
[22] KOKKINOS P, VARVARIGOS E. Scheduling efficiency of resource information aggregation in grid networks[J]. Future generation computer systems, 2012, 28(1):9-23.
[23] CUMMINGS J. Full-text aggregation-an examination of metadata accuracy and implications for resource sharing[J]. Serials review, 2003, 29(1):11-15.
[24] TANI A, CANDELA L, CASTELLI D. Dealing with metadata quality:the legacy of digital library efforts[J]. Information processing &management,2013,49(6):1194-1205.
[25] TEJEDA-LORENTE Á, PORCEL C, PEIS E, et al. A quality based recommender system to disseminate information in a university digital library[J]. Information sciences an international journal, 2014, 261(5):52-69.
[26] 王福. 数字资源聚合误差控制视角下的个性化服务模型构建[J]. 图书馆杂志,2017(1):1-11.
[27] 肖奎, 罗保山, 吴天吉. 一种限定领域的网络文档资源质量评价方法——以维基百科为例[J]. 情报理论与实践, 2016, 39(12):120-123.
[28] 邱均平, 董克. 引文网络中文献深度聚合方法与实证研究——以WOS数据库中XML研究论文为例[J]. 中国图书馆学报, 2013, 39(2):111-120.
[29] 张博, 乔欢. 协同知识生产社区的内容质量评估模型研究——以维基百科为例[J]. 现代情报, 2015, 35(10):17-22.
[30] 王振蒙,姜恩波. 关联书目数据质量评估框架构建与实证评估[J]. 图书情报工作, 2016,60(15):108-115.
[31] 赵文轩, 李春旺. 关联数据质量评价方法研究述评[J]. 情报理论与实践, 2016, 39(2):134-138.
[32] 毕强, 刘健, 鲍玉来. 基于语义相似度的文本聚类研究[J]. 现代图书情报技术, 2016, 32(12):9-16.
[33] 刘宏哲, 须德. 基于本体的语义相似度和相关度计算研究综述[J]. 计算机科学, 2012, 39(2):8-13.
[34] WELLER K. Folksonomies and ontologies:two new players in indexing and knowledge representation[C]//Applying web 2.0:innovation, impact and implementation,proceedings of the online information conference.London:Reed Elsevier plc, 2007:6-8.
[35] YEUNG C,GIBBINS N, SHADBOLT N. Understanding the semantics of ambiguous tags in folksonomies[J]. Molecular physics, 2008,28(1):297-300.
[36] 吴贝贝, 夏翠娟. 关联书目数据模型比较研究[J]. 图书馆杂志, 2015, 34(5):71-79.
[37] 孙琛琛, 申德荣, 寇月,等. 面向关联数据的联合式实体识别方法[J]. 计算机学报, 2015(9):1739-1754.
[38] 成全, 周兰芳. 关联数据的语义动态发现及关联构建机制研究[J]. 情报科学, 2016(10):88-94.
[39] DEMTER J, MARTIN M, LEHMANN J. LODstats-an extensible framework for high-performance dataset analytics[C]//International conference on knowledgeengineering and knowledge management.Berlin:Springer-verlag, 2012:353-362.
[40] 姜恩波, 王振蒙. 关联数据质量评估研究综述[J]. 情报杂志, 2016, 35(4):171-176.
[41] 唐一之, 张仲义. 基于本体的知识聚合策略[J]. 吉首大学学报:自然科学版, 2008, 29(2):72-76.
[42] 黄莺. 元数据质量的定量评估方法综述[J]. 图书情报工作, 2013, 57(4):143-148.
[43] 张江甫, 顾新. 基于网络三元组的知识流动模型研究[J]. 情报理论与实践, 2015, 38(8):120-123.
[44] 董伟, 贾东琴. 基于用户视角的高校移动图书馆可用性影响因素实证研究[J]. 图书馆工作与研究, 2017(4):58-64.
[45] 徐路. 图书馆未来发展的关键趋势,面临挑战和重要技术——基于《新媒体联盟地平线报告:2015图书馆版》的分析[J]. 图书情报知识, 2017(2):26-32.
[46] 彭凤. 信息资源丰裕系数测度模型评析及优化[J]. 情报杂志, 2006, 25(6):56-57.
[47] 欧石燕, 胡珊, 张帅. 本体与关联数据驱动的图书馆信息资源语义整合方法及其测评[J]. 图书情报工作, 2014, 58(2):5-13.
[48] 涂志芳, 刘兹恒. 美国数字公共图书馆的创新特点及对我国的启示[J]. 图书与情报, 2015(6):47-53.
[49] 李杨, 郝志峰, 谢光强,等. 质量度量指标驱动的数据聚合与多维数据可视化[J]. 智能系统学报, 2013(4):299-304.
[50] 邱均平, 方国平. 高校图书馆语义化馆藏资源深度聚合模式及其应用研究[J]. 图书馆学研究, 2014(21):64-71.
[51] 张弛. 大数据资源扩展性探究[J]. 山西师大学报(社会科学版), 2015(1):61-64.
[52] 夏莉霞, 方卿. 国外开放存取期刊的质量评价与控制研究综述[J]. 信息资源管理学报, 2011(2):49-54.
[53] 苏新宁. 大数据时代数字图书馆面临的机遇和挑战[J]. 中国图书馆学报, 2015, 41(6):4-12.
Outlines

/