Multiple-pattern Analysis and Prediction of Topic Evolution Path Based on Topic Correlation: A Case Study of Information Science Research

  • Wei Ling ,
  • Xu Haiyun ,
  • Hu Zhengyin ,
  • Dong Kun ,
  • Wang Chao ,
  • Pang Hongsen
Expand
  • 1. School of Information and Management, Shanxi University of Finance and Economics, Taiyuan 030006;
    2. Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu 610041;
    3. University of Chinese Academy of Sciences, Beijing 100049;
    4. Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530

Received date: 2016-04-28

  Revised date: 2016-06-24

  Online published: 2016-07-05

Abstract

[Purpose/significance] Based on the topic correlation, this paper made a detailed analysis on the phenomenon and process of topic convergence or transformation, detected the interdisciplinary topics and their cross modality, and generalized the topics' evolution trend and multiple patterns of evolution path.[Method/process] Firstly, high frequency keywords of information science papers were selected to generate a co-word matrix, which was transferred to be loaded into a community detection tool. Then, community evolution graphs and statistics were both used to analyze the topic evolution.[Result/conclusion] On the whole, the topics changed constantly over time, but the core topics remain unchanged. The phenomenon of expansion, contraction and convergence are common; division is rare; emergence and disappearance are moderate. Three specific community evolution traces with relatively stable activity developed clearly throughout the time range, reflecting the three types of core topics' continuity. The evolution paths of the three kinds of core topics present three evolution models, that is sublimation-absorbing, inclusion-iteration, and radiation-promotion. According to the research, the method of multiple-pattern analysis and prediction of topic evolution based on topic correlation, can reveal the evolution patterns of topics in a macro level, and analyze the cross modalities of topics in a micro level. Combining the advantages of both, the method can uncover the inheritance or innovation of topics, and predict the future directions of interdisciplinary topics.

Cite this article

Wei Ling , Xu Haiyun , Hu Zhengyin , Dong Kun , Wang Chao , Pang Hongsen . Multiple-pattern Analysis and Prediction of Topic Evolution Path Based on Topic Correlation: A Case Study of Information Science Research[J]. Library and Information Service, 2016 , 60(13) : 71 -81 . DOI: 10.13266/j.issn.0252-3116.2016.13.010

References

[1] 王春秀,冉美丽.学科主题演化定量分析的理论基础探析[J].现代情报,2008(6):48-50.
[2] 唐果媛,张薇.基于共词分析法的学科主题演化研究进展与分析[J].图书情报工作,2015,59(5):128-136.
[3] 叶春蕾,冷伏海.基于共词分析的学科主题演化方法改进研究[J].情报理论与实践,2012,35(3):79-82.
[4] CALLON M,LAW J,RIP A.Mapping the dynamics of science and technology:sociology of science in the real world[M].London:The Macmillan Press,1998:103-141.
[5] CALLON M,COURTIAL J P,LAVILLE F.Co-word analysis as a tool for describing the network of interactions between basic and technological research:the case of polymer chemsitry[J].Scientometrics,1991,22(1):155-205.
[6] KOSTOFF R N,EBERHART H J,TOOTHMAN D R.Database tomography for technical intelligence:a roadmap of the near-earth space science and technology literature[J].Information processing&management,1997,34(1):69-85.
[7] LAW J,BAUIN S,COURTIAL J P,et al.Policy and the mapping of scientific change:a co-word analysis of research into environmental acidification[J].Scientometrics,1988,14(3):251-264.
[8] COULTER N,MONARCH I,KONDA S.Software engineering as seen through its research literature:a study in co-word analysis[J].Journal of the American Society for Information Science,1998,49(13):1206-1223.
[9] 楚克明,李芳.基于LDA模型的新闻话题的演化[J].计算机应用与软件,2011,28(4):4-7.
[10] LV N,LUO J,LIU Y,et al.Analysis of topic evolution based on subtopic similarity[C]//Proceedings of the 2009 international conference on computational intelligence and natural computing.Wuhan:IEEE Computer Society,2009,2:506-509.
[11] 胡艳丽,白良,张维明.一种话题演化建模与分析方法[J].自动化学报,2012,38(10):1690-1697.
[12] 李保利,杨星.基于LDA模型和话题过滤的研究主题演化分析[J].小型微型计算机系统,2012,33(12):2738-2743.
[13] 崔凯,周斌,贾焰,等.一种基于LDA的在线主题演化挖掘模型[J].计算机科学,2010,37(11):156-159,193.
[14] 胡吉明,陈果.基于动态LDA主题模型的内容主题挖掘与演化[J].图书情报工作,2014,58(2):138-142.
[15] 王晓光.科学知识网络的形成与演化(I):共词网络方法的提出[J].情报学报,2009,28(4):599-605.
[16] 王晓光.科学知识网络的形成与演化(Ⅱ):共词网络可视化与增长动力[J].情报学报,2010,29(2):314-322.
[17] PALLA G,BARABÁSI A L,VICSEK T.Quantifying social group evolution[J].Nature,2007,446(7136):664-667.
[18] BERGER-WOLF T Y,SAIA J.A framework for analysis of dynamic social networks[C]//Proceedings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining.Philadelphia:Association for Computing Machinery,2006:523-528.
[19] 王晓光.基于NEview的学科主题演化可视化分析[J].情报学报,2013,32(9):900-911.
[20] VERSPAGEN B.Mapping technological trajectories as patent citation networks:a study on the history of fuel cell research[J].Advances in complex systems,2007,10(1):93-115.
[21] LIU J S,LU L Y.An integrated approach for main path analysis:development of the Hirsch index as an example[J].Journal of the American Society for Information Science and Technology,2012,63(3):528-542.
[22] BEKKERS R,MARTINELLI A.Knowledge positions in high-tech markets:trajectories,standards,strategies and true innovators[J].Technological forecasting&social change,2012,79(7):1192-1216.
[23] LU L Y Y,LIN B J Y,LIU J S,et al.Ethics in nanotechnology:what's being done? What's missing?[J].Journal of business ethics,2012,109(4):583-598.
[24] 祝青松.语义增强的引文分析方法与应用实验研究[D].北京:中国科学院大学,2014.
[25] 陈亮,杨冠灿,张静,等.面向技术演化分析的多主路径方法研究[J].图书情报工作,2015,59(10):124-130.
[26] 李春景,刘仲林.现代科学发展学科交叉模式探析——一种学科交叉模式的分析框架[J].科学学研究,2004(3):244-248.
[27] 金薇吟.学科交叉方法探析[J].科学学研究,2006(5):667-671.
[28] 周文娟.基于诺贝尔自然科学奖的学科交叉研究[D].南昌:南昌大学,2010.
[29] 潘教峰,张晓林,韩涛,等.科学结构地图2012[M].北京:科学出版社,2013.
[30] BLONDEL V D,GUILLAUME J L,LAMBIOTTE R,et al.Fast unfolding of community hierarchies in large networks[EB/OL].[2016-06-20].https://www.researchgate.net/publication/220485842.
[31] GUIMERÀ R,SALES-PARDO M,AMARAL L A N.Classes of complex networks defined by role-to-role connectivity profiles[J].Nature physics,2007,3(1):63-69.

Outlines

/