Library and Information Service >
Study on Personalized Semantic TRIZ
Received date: 2015-01-30
Revised date: 2015-03-20
Online published: 2015-04-05
[Purpose/significance] This paper proposes a personalized semantic TRIZ framework oriented to specific domain patents, which helps to mine latent information and build semantic association from patent documents. [Method/process] This framework constructs semantic TRIZ from three dimensions of concept space, index space and application space. It describes the structure of semantic TRIZ based on micro-meso-macro levels, which include SAO semantic unit, technology topics and technology domains. We select the field of large aperture optical elements for empirical analysis and construct the LAOE semantic TRIZ. [Result/conclusion] The result shows that this novel method can effectively construct semantic TRIZ and better support patent tech mining.
Key words: semantic TRIZ; patent analysis; semantic mapping; feature deduction
Hu Zhengyin , Fang Shu , Zhang Xian , Wen Yi , Liang Tian . Study on Personalized Semantic TRIZ[J]. Library and Information Service, 2015 , 59(7) : 123 -131 . DOI: 10.13266/j.issn.0252-3116.2015.07.017
[1] 吕详惠,仇宝艳,乔鸿.基于本体的专利知识发现体系研究[J].计算机与信息技术,2008 (7) :43-46.
[2] 王朝晖.专利文献的特点及其利用[J].现代情报,2008(9) :151-152,156.
[3] Porter A L, Cunninggham S W. Tech mining: Exploiting new technologies for competitive advantage[M]. Hoboken:John Wiley & Sons, 2005:17-23.
[4] Porter A L. How tech mining can enhance R&D management[EB/OL].[2015-03-20].http://www.thevantagepoint.com/resources/articles/How%20Tech%20Mining%20can%20Enhance%20R_D%20Mgmt.pdf.
[5] 胡正银,方曙,文奕,等. 面向TRIZ的专利自动分类研究[J]. 现代图书情报技术,2015(1):66-74.
[6] Mikhail V. Semantic TRIZ [EB/OL].[2014-09-10]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.1907&rep=rep1&type=pdf.
[7] IHS Inc. Optimize decision-making across the product lifecycle. White Paper[EB/OL].[2015-03-18]. http://inventionmachine.com/Portals/56687/docs/OptimizingDecisionMakingAcrosst heProductLifecycle_WhitePaper_InventionMachine.pdf.
[8] CREAX Inc. Accelerate your R&D-process with CREAX CreationSuite. White Paper[EB/OL].[2015-02-07]. http://www.creationsuite.com/Content/CREAX%20CreationSuite%20folder.pdf.
[9] AULIVE. ProductionInspiration[EB/OL].[2015-01-10]. http://www.productioninspiration.com/.
[10] Mukherjea S, Bamba B, Kankar P. Information retrieval and knowledge discovery utilizing a BioMedical patent semantic Web[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(8):1099-1110.
[11] Kin Y, Tian Y, Jeong Y, et al. Automatic discovery of technology trends from patent text [C]//SAC '09 Proceedings of the 2009 ACM Symposium on Applied Computing. New York:ACM,2009.
[12] Kim H B, Hyeok Y J, Kim K S. Semantic SAO network of patents for reusability of inventive knowledge[EB/OL].[2015-02-22].http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6225858.
[13] 黄永文,张智雄,吴振新,等. 集成化可视化的知识检索服务平台建设[J]. 科学信息化技术与应用,2013,4(2):34-42.
[14] Darioi B, Alberto C, Fulvio C. Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics[J]. World Patent Information, 2010,32(1):30-38.
[15] Sungchul C, Hyunseok P, Dongwoo K, et al. An SAO-based text mining approach to building a technology tree for technology planning[J]. Experts Systems with Applications, 2012,39(13):11443-11455.
[16] Zhang Xian, Fang Shu, Tang Chuan, et al.Study on indicator system for core patent documents evaluation[C]//Proceedings of ISSI 2009 - 12th International Conference of the International Society for Scientometrics & Informetrics. Utiechet: International Society for Informetrics and Scientometrics, 2009: 154-164.
[17] Anthony F, Stephen S, Oren E. Identifying relations for open information extraction [EB/OL].[2015-02-02]. http://ai.cs.washington.edu/www/media/papers/reverb.pdf.
[18] Zhang Yi, Alan P, Hu Zhengyin, et al. "Term clumping" for technical intelligence: A case study on dye-sensitized solar cells [J]. Technological Forecasting and Social Change, 2014, 85(6):26-39.
[19] David M B, Andrew Y N, Michael I J. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003(3):993-1022.
[20] David H. Java WordNet similarity [EB/OL]. [2015-01-12]. http://www.cogs.susx.ac.uk/users/drh21/.
[21] Thomson Reuters. Thomson Data Analyzer [EB/OL]. [2015-01-12]. http://ip-science.thomsonreuters.com.cn/media/tda.pdf.
[22] David M. Machine learning with MALLET[EB/OL]. [2015-01-12]. http://mallet.cs.umass.edu/mallet-tutorial.pdf.
[23] Remco R.Weka Manual[EB/OL].[2015-01-23]. http://prdownloads.sourceforge.net/weka/WekaManual-3-6-12.pdf.
[24] Apache Software Foundation. Solr reference guide. [EB/OL]. [2015-01-03]. http://apache.fayea.com/lucene/solr/ref-guide/apache-solr-ref-guide-5.0.pdf.
/
〈 | 〉 |