Library and Information Service >
Community Detection for Large-scale Multi-dimensional Network
Received date: 2014-05-27
Revised date: 2014-07-04
Online published: 2014-08-20
Users in multi-dimensional network usually show a variety of behaviors and interests, so it is hard to find effective communities by using only one dimension. In order to effectively solve the above problem, this paper firstly maps directed networks into undirected weighted networks based on user relationship strength, and then integrates all the networks. Secondly, this paper models hidden community by using SSN-LDA, and calculates the users' similarity by user-community probability distribution matrix. At last, Bisecting K-Means is used to detect community of users. Through the experiments on real Science blog, the result shows that this method can get more accurate user community.
Wu Xiaolan , Zhang Chengzhi . Community Detection for Large-scale Multi-dimensional Network[J]. Library and Information Service, 2014 , 58(16) : 122 -130 . DOI: 10.13266/j.issn.0252-3116.2014.16.019
[1] Wasserman S. Social network analysis: Methods and applications[M]. London:Cambridge University Press,1994.
[2] Scott J. Social network analysis: A handbook (2nd ed)[M]. London:Sage Publications,2000.
[3] Moody J. Race, school integration, and friendship segregation in American[J]. American Journal of Sociology,2001, 107(3): 679-716.
[4] Fortunato S. Community detection in graphs[J]. Physics Reports,2010, 486(3): 75-174.
[5] Newman M E. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences,2006, 103(23): 8577-8582.
[6] Liu Zonghua,Hu Bambi. Epidemic spreading in community networks[J]. Europhysics Letters,2005, 72(2): 315-321.
[7] Huang Wei,Li Chunguang. Epidemic spreading in scale-free networks with community structure[J]. Journal of Statistical Mechanics: Theory and Experiment,2007(1):P01014.
[8] Yan Gang, Fu Zhong-Qian, Ren Jie, et al. Collective synchronization induced by epidemic dynamics on complex networks with communities[J]. Physical Review E,2007, 75(1): 016108.
[9] Tang Lei, Wang Xufei,Liu Huan. Community detection in multi-dimensional networks[R]//Technical Report TR10-006.Arizona:Arizona State University,2010.
[10] 唐磊,刘欢. 社会计算:社区发现和社会媒体挖掘[M]. 北京:机械工业出版社,2012.
[11] 刘萍,陈枫琳. 基于社会资本的异构社会网络构建研究[J]. 情报学报,2013, 32(8): 805-816.
[12] Pan Wei, Aharony N,Pentland A. Composite social network for predicting mobile apps installation[C]//AAAI.Proceedings of the Twenty-Fifth AAAI Conference on Arifical Intelligence. New York:AAAI Press, 2011:821-827.
[13] Shao Zheng, He Xiaofei, et al. Community mining from multi-relational networks[C]//ECML. Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases.New York:Springer,2005: 445-452.
[14] Von Luxburg U. A tutorial on spectral clustering[J]. Statistics and computing,2007, 17(4): 395-416.
[15] Nowicki K,Snijders T A B. Estimation and prediction for stochastic blockstructures[J]. Journal of the American Statistical Association,2001, 96(455): 1077-1087.
[16] Airoldi E M, Blei D M, Fienberg S E, et al. Mixed membership stochastic blockmodels[J]. Journal of Machine Learning Research,2008(9):1981-2014,3.
[17] Hoff P D, Raftery A E,Handcock M S. Latent space approaches to social network analysis[J]. Journal of the American Statistical Association,2002, 97:1090-1098.
[18] Handcock M S, Raftery A E,Tantrum J M. Model‐based clustering for social networks[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society),2007, 170(2): 301-354.
[19] Zhang Haizheng, Qiu Baojun, Giles C L,et al. An LDA-based community structure discovery approach for large-scale social networks[C]//IEEE.Intelligence and Security Informatics.New York:IEEE Press, 2007 IEEE.2007:200-207.
[20] Blei D M, Ng A Y,Jordan M I. Latent dirichlet allocation[J].The Journal of Machine Learning Research,2003(3): 993-1022.
[21] Granovetter M. The strength of weak ties[J]. American Journal of Sociology,1973, 78(6):1360-1380.
[22] Marsden P V. Core discussion networks of Americans[J]. American Sociological Review,1987,52(1): 122-131.
[23] Burt R S. The social structure of competition[J]. Networks and Organizations: Structure, Form, and Action,1992,3(3):57-91.
[24] Gilbert E,Karahalios K. Predicting tie strength with social media[C]//ACM SIGCHI .Proceedings of the Conferece on Human Factors in Computing Systems (CHI'09). New York: ACM,2009:211-220.
[25] Kahanda I,Neville J. Using transactional information to predict link strength in online social networks[C]//AAAI. Proceedings of the Third International Conference on Weblogs and Social Media (ICWSM 2009) .New York:AAAI Press,2009.
[26] 张平. 基于密度模块的微博社区发现方法 [D]: 昆明:云南大学, 2013.
[27] San Mateo:Morgan Kaufmann. Expectation-propagation for the generative aspect model[C]//Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence San Mateo:Morgan Kaufmann,2002:352-359.
[28] Andrieu C, De Freitas N, Doucet A, et al. An introduction to MCMC for machine learning[J]. Machine learning,2003, 50(1-2): 5-43.
[29] Griffiths T L,Steyvers M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(Suppl 1): 5228-5235.
[30] Heinrich G. Parameter estimation for text analysis[R].Darmstadt:Fraunhofer IGD, 2009.
[31] Steinbach M, Karypis G,Kumar V. A comparison of document clustering techniques[C]//KDD Workshop on Text Mining .New York: Springer Verlag Press,2000:525-526.
[32] Tang Lei,Liu Huan. Community detection and mining in social media[J]. Synthesis Lectures on Data Mining and Knowledge Discovery,2010, 2(1): 1-137.
[33] Danon L, Diaz-Guilera A, Duch J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics: Theory and Experiment,2005, 2005(9): P09008.
[34] Raghavan U N, Albert R,Kumara S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E,2007, 76(3): 036106.
[35] Meeks E, Using word clouds for topic modeling results[OL].[2014-04-21]. https://dhs.stanford.edu/algorithmic-literacy/using-word-clouds-for-topic-modeling-results/.
/
〈 | 〉 |