An Approach for Constructing Expert Knowledge Map Based on OKM

  • Mao Jin ,
  • Li Gang
Expand
  • Center for the Studies of Information Resource, Wuhan University, Wuhan 430072

Received date: 2014-04-10

  Revised date: 2014-05-12

  Online published: 2014-07-20

Abstract

This paper extracts research expertise features for experts from the text of papers published by them. Overlapping K-means(OKM) is then applied to divide experts into overlapping clusters in the research specialty, which identifies the multifold expertise for experts and assembles those who share the same kind of expertise. On the basis of graph theorem, overlapping expert clusters are transformed into the graph representation of experts in the research specialty. Hence, expert knowledge map for the research specialty can be constructed with the help of widely used graph visualization tools.

Cite this article

Mao Jin , Li Gang . An Approach for Constructing Expert Knowledge Map Based on OKM[J]. Library and Information Service, 2014 , 58(14) : 34 -40 . DOI: 10.13266/j.issn.0252-3116.2014.14.005

References

[1] 陈悦,刘则渊,陈劲, 等. 科学知识图谱的发展历程[J]. 科学学研究, 2008, 26(3):449-460.

[2] Chen Chaomei. Mapping scientific frontiers:The quest for knowledge visualization [M]. London:Springer, 2003.

[3] 程齐凯,王晓光. 一种基于共词网络社区的科研主题演化分析框架[J]. 图书情报工作, 2013, 57(8):91-96.

[4] Morris S A, Goldstein M L. Manifestation of research teams in journal literature:A growth model of papers, authors, collaboration, coauthorship, weak ties, and Lotka's law[J]. Journal of the American Society for Information Science and Technology, 2007, 58(2):1764-1782.

[5] 侯海燕. 基于知识图谱的科学计量学进展研究[D]. 大连:大连理工大学, 2006.

[6] Chen Chaomei. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3):359-377.

[7] 陆伟,刘杰,秦喜艳. 基于专长词表的图情领域专家检索与评价[J]. 中国图书馆学报, 2010, 36(2):70-76.

[8] Vail E F. Knowledge mapping:Getting started with knowledge management[J]. Information Systems Management, 1999,16(4):10-23.

[9] Moradi R, Mahani N T, Eghbali N, et al. Knowledge map as a decision support tool for expert finding in research-based organizations[C]//Proceedings of Telecommunications (IST), 2012. Tehran:IEEE, 2012:1195-1200.

[10] Ding Ying.Community detection:Topological vs. topical[J].Journal of Informetrics,2011,5(4):498-514.

[11] Clauset A, Newman M E, Moore C. Finding community structure in very large networks[J]. Physical Review E,2004:66111.

[12] Girvan M, Newman M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.

[13] Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics:Theory and Experiment, 2008(10):P10008.

[14] Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2):167-256.

[15] 马费成,宋恩梅. 我国情报学研究分析:以 ACA 为方法 [J]. 情报学报, 2006, 25(3):259-268.

[16] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1):993-1022.

[17] Steyvers M, Smyth P, Rosen-Zvi M, et al. Probabilistic author-topic models for information discovery[C]//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle:ACM, 2004:306-315.

[18] Tang Jie, Zhang Jing, Yao Limin, et al. ArnetMiner:Extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas:ACM, 2008:990-998.

[19] Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043):814-818.

[20] Arora S, Ge R, Sachdeva S, et al. Finding overlapping communities in social networks:Toward a rigorous approach[C]//Proceedings of the 13th ACM Conference on Electronic Commerce. Valencia:ACM, 2012:37-54.

[21] Havemann F, Gl?ser J, Heinz M, et al. Identifying overlapping and hierarchical thematic structures in networks of scholarly papers:A comparison of three approaches[J]. PLoS one, 2012, 7(3):e33255.

[22] Santamaría R, Therón R. Overlapping clustered graphs:Co-authorship networks visualization[C]// Proceedings of the 9th International Symposium on Smart Graphics. Berlin Heidelberg:Springer, 2008:190-199.

[23] Börner K, Chen Chaomei, Boyack K W. Visualizing knowledge domains[J]. Annual Review of Information Science and Technology, 2003, 37(1):179-255.

[24] Sci2 Team. Science of science (Sci2)tool[EB/OL]. [2013-12-08]. http://sci2.cns.iu.edu.

[25] Goldstein M L, Morris S A, Yen G G. Group-based Yule model for bipartite author-paper networks[J]. Physical Review E, 2005, 71(2):026108.

[26] Morris S A, Yen G G. Crossmaps:Visualization of overlapping relationships in collections of journal papers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S1):5291-5296.

[27] Cleuziou G. An extended version of the k-means method for overlapping clustering[C]// Proceedings of 19th International Conference on Pattern Recognition. Tampa:IEEE, 2008:1-4.

[28] Yang M S. A survey of fuzzy clustering[J]. Mathematical and Computer modelling, 1993, 18(11):1-16.

[29] Berkhin P. A survey of clustering data mining techniques[M]//Grouping Multidimensional Data. Heidelberg:Springer, 2006:25-71.

[30] Bird S, Dale R, Dorr B J, et al. The ACL anthology reference corpus:A reference dataset for bibliographic research in computational linguistics[C]//Proceedings of the Sixth International Conference on Language Resources and Evaluation. Marrakech:European Language Resources Association, 2008:1755-1759.

[31] Radev D R, Muthukrishnan P, Qazvinian V. The ACL anthology network corpus[C]//Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries. Singapore:Association for Computational Linguistics, 2009:54-61.

[32] The Stanford Parser:A statistical parser[EB/OL]. [2013-10-12]. http://nlp.stanford.edu/software/lex-parser.shtml.

[33] Liu Xinhai, Yu Shi, Janssens F, et al. Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database[J]. Journal of the American Society for Information Science and Technology, 2010, 61(6):1105-1119.

[34] Rousseeuw P J. Silhouettes:A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20(1):53-65.

[35] Bastian M, Heymann S, Jacomy M. Gephi:An open source software for exploring and manipulating networks[C]//Proceedings of the Third International Conference on Weblogs and Social Media. San Jose:AAAI, 2009:361-362.

Outlines

/