Identifying Influential Users in Micro-group Using Association Rules

  • Wang Heyong ,
  • Lan Jinjiong
Expand
  • School of Economics and Commerce, South China University of Technology, Guangzhou 510006

Received date: 2013-12-10

  Revised date: 2014-01-06

  Online published: 2014-01-20

Abstract

This paper proposes a recognition model using association rules to identify the target users and choose Sina micro-group to build the model of association rules using the true data set. In order to ensure the validity of the model, this paper compares the result of association model with that of the current social network analysis and evaluation system. Lastly, in comparison with evaluation system, it is found that evaluation system should be modified to adapt the specific issues in micro-group and the association rules method can automatically process those problems, which also illustrates the universal use of the mode of association rules.

Cite this article

Wang Heyong , Lan Jinjiong . Identifying Influential Users in Micro-group Using Association Rules[J]. Library and Information Service, 2014 , 58(02) : 115 -120 . DOI: 10.13266/j.issn.0252-3116.2014.02.019

References

[1] 刘锐. 微博意见领袖初探[J]. 新闻记者,2011(3):57-60.
[2] Eccleston D, Griseri L. How does Web 2.0 stretch traditional influencing patterns?[J]. International Journal of Market Research, 2008, 50(5): 575-590.
[3] Van den Bulte C, Wuyts S. Social networks and marketing[M]. Cambridge: Marketing Science Institute, 2007.
[4] Katz E. The two-step flow of communication: An up-to-date report on an hypothesis[J]. Public Opinion Quarterly, 1957, 21(1): 61-78.
[5] Gladwell M. The tipping point: How little things can make a big difference[M]. London: Hachette Digital, Inc., 2006.
[6] Watts D J, Dodds P S. Influentials, networks, and public opinion formation[J]. Journal of Consumer Research, 2007, 34(4): 441-458.
[7] Eirinaki M, Monga S P S, Sundaram S. Identification of influential social networkers[J]. International Journal of Web Based Communities, 2012, 8(2): 136-158.
[8] Probst F, Grosswiele D K L, Pfleger D K R. Who will lead and who will follow: Identifying influential users in online social networks[J]. Business & Information Systems Engineering, 2013, 5(3): 179-193.
[9] Goldenberg J, Han S, Lehmann D, et al. The role of hubs in the adoption processes[J]. Journal of Marketing, 2009, 73(2): 1-13.
[10] Hinz O, Skiera B, Barrot C, et al. Seeding strategies for viral marketing: An empirical comparison[J]. Journal of Marketing, 2011, 75(6): 55-71.
[11] 韩运荣,高顺杰. 微博舆论中的意见领袖素描——一种社会网络分析的视角[J]. 新闻与传播研究,2012(3):61-69.
[12] Yamaguchi Y, Takahashi T,Amagasa T, et al. Turank: Twitter user ranking based on user-tweet graph analysis[C]//Web Information Systems Engineering-WISE 2010. Berlin Heidelberg:Springer, 2010: 240-253.
[13] Weng Jianshu, Lim Ee-peng, Jiang Jing, et al. Twitterrank:Finding topic-sensitive influential twitterers[C]//Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York:ACM, 2010: 261-270.
[14] Kaul R, Yun Y, Kim S G. Ranking billions of Web pages using diodes[J]. Communications of the ACM, 2009, 52(8): 132-136.
[15] Domingos P, Richardson M. Mining the network value of customers[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM, 2001: 57-66.
[16] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2003: 137-146.
[17] Even-Dar E,Shapira A. A note on maximizing the spread of influence in social networks[C]//Internet and Network Economics. Berlin Heidelberg:Springer, 2007: 281-286.
[18] Kimura M, Saito K. Tractable models for information diffusion in social networks[C]//Knowledge Discovery in Databases: PKDD 2006. Berlin Heidelberg:Springer, 2006: 259-271.
[19] 章云龙. 社交网络中基于话题的影响最大化问题研究[D]. 上海: 上海交通大学,2012.
[20] 王君泽,王雅蕾,禹航,等. 微博客意见领袖识别模型研究[J]. 新闻与传播研究,2011(6):81-88.
[21] 李随成,陈敬东,赵海刚. 定性决策指标体系评价研究[J]. 系统工程理论与实践,2001(9):22-28.
[22] Agrawal R, Srikant R. Fast algorithms for mining association rules[C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco:Morgan Kaufmann, 1994:487-499.
[23] Hanneman R A, Riddle M. Introduction to social network methods[M]. Riverside: University of California,2005.
[24] Marin A, Wellman B.The Sage handbook of social network analysis[M]. London: Sage Publications, 2011: 11-25.
[25] Zar J H. Significance testing of the Spearman rank correlation coefficient[J]. Journal of the American Statistical Association, 1972, 67(339): 578-580.

Outlines

/