Analysis and Recommendation of Social Media User Tags

  • Tu Cunchao ,
  • Liu Zhiyuan ,
  • Sun Maosong
Expand
  • Department of Computer Science and Technology, Tsinghua University, Beijing 100084

Received date: 2013-10-08

  Revised date: 2013-11-14

  Online published: 2013-12-05

Abstract

Microblog is an important online service in Web 2.0. As a platform for web users to post messages, communicate and share information, microblog contains rich information of users. Microblog services can use tags to represent interests and attributes of users. Meanwhile, the interests and attributes of a microblog user also hide behind his/her text and network information. In this paper, we quantitatively analyze user tags and propose a network-regularized tag dispatch model for user tag recommendation. NTDM models the semantic relations between words in user descriptions and tags, with social network structure as its regularization factor. Experiment results in a real world dataset show its effectiveness compared to other baseline methods.

Cite this article

Tu Cunchao , Liu Zhiyuan , Sun Maosong . Analysis and Recommendation of Social Media User Tags[J]. Library and Information Service, 2013 , 57(23) : 24 -30,35 . DOI: 10.7536/j.issn.0252-3116.2013.23.004

References

[1] Java A, Song Xiaodan, Finin T, et al. Why we Twitter:Understanding microblogging usage and communities[C]//Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis.New York:ACM, 2007:56-65.
[2] Iwata T, Yamada T, Ueda N. Modeling social annotation data with content relevance using a topic model[C]//Advances in Neural Information Processing Systems.New York:ACM, 2009:835-843.
[3] Jaschke R, Marinho L, Hotho A, et al. Tag recommendations in social bookmarking systems[J]. Ai Communications, 2008, 21(4):231-247.
[4] Liu Zhiyuan, Chen Xinxiong, Sun Maosong. A simple word trigger method for social tag suggestion[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011:1577-1588.
[5] Rendle S, Marinho L B, Nanopoulos A, et al. Learning optimal ranking with tensor factorization for tag recommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM, 2009:727-736.
[6] Si Xiance, Liu Zhiyuan, Sun Maosong. Modeling social annotations via latent reason identification[J].IEEE Intelligent Systems, 2010, 25(6):42–49.
[7] Resnick P, Varian H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3):56-58.
[8] Garg N, Weber I. Personalized, interactive tag recommendation for flickr[C]//Proceedings of the 2008 ACM Conference on Recommender Systems.New York:ACM, 2008:67-74.
[9] Li Xirong, Snoek C G, Worring M. Learning social tag relevance by neighbor voting[J]. Multimedia, IEEE Transactions on, 2009, 11(7):1310-1322.
[10] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J].The Journal of Machine Learning Research, 2003(3):993-1022.
[11] Si Xiance, Sun Maosong. Tag-LDA for scalable real-time tag recommendation[J]. Journal of Computational Information Systems, 2009, 6(1):23-31.
[12] Krestel R, Fankhauser P, Nejdl W. Latent Dirichlet Allocation for tag recommendation[C]//Proceedings of the third ACM Conference on Recommender Systems.New York: ACM, 2009:61-68.
[13] McPherson M, Smith-Lovin L, Cook J M. Birds of a feather:Homophily in social networks[J]. Annual Review of Sociology, 2001, 27:415-444.
[14] Cilibrasi R L, Vitanyi PM. The Google similarity distance[J]. Knowledge and Data Engineering, IEEE Transactions on, 2007, 19(3):370-383.
[15] De Francisci Morales G, Gionis A, Lucchese C. From chatter to headlines:Harnessing the real-time Web for personalized news recommendation[C]//Proceedings of the Fifth ACM International Conference on Web Search and Data Mining.New York: ACM, 2012:153-162.
[16] Hofmann T. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 1999:50-57.
[17] Ramage D, Hall D, Nallapati R, et al. Labeled LDA:A supervised topic model for credit attribution in multi-labeled corpora[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2009:248-256.
[18] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1977, 39(1):1-38.
[19] Salton G, Buckley C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management, 1988, 24(5):513-523.
[20] Zhu Xiaojin, Ghahramani Z, Lafferty J, et al. Semi-supervised learning using Gaussian fields and harmonic functions[C]//The 20th International Conference on Machine Learning. Palo Alto: AAAI, 2003:912-919.
[21] Cai Deng, Mei Qiaozhu, Han Jiawei, et al. Modeling hidden topics on document manifold[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management.New York: ACM, 2008:911-920.
[22] Mei Qiaozhu, Cai Deng, Zhang Duo, et al. Topic modeling with network regularization[C]//Proceedings of the 17th International Conference on World Wide Web.New York:ACM, 2008:101-110.
[23] Langville A N, Meyer C D. Deeper inside pagerank[J]. Internet Mathematics, 2004, 1(3):335-380.
[24] Lin Dekang. An information-theoretic definition of similarity[C]//Proceedings of the Fifteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1998:296-304.
[25] Mishne G. Autotag:A collaborative approach to automated tag assignment for weblog posts[C]//Proceedings of the 15th International Conference on World Wide Web.New York:ACM,2006:953-954.

Outlines

/