Library and Information Service >
Non-hierarchical Relations Extraction of Chinese Texts Based on Grammar Rules and Improved Association Rules
Received date: 2013-09-23
Revised date: 2013-11-01
Online published: 2013-11-20
There is lack of non-hierarchical relations extraction suitable for Chinese texts. Association Rules do not effectively extract vocabulary relations concentrated in part of the text. This paper defines a set of non-hierarchical relations extraction rules of Chinese texts and an improved association rules based on average value. The practical results show that non-hierarchical relations extraction rules of Chinese texts can efficiently extract subject, predicate and object in Chinese texts, and form the non-hierarchical relations. Improved association rules can extract non-hierarchical relations of the vocabulary concentrated in part of the text.
Yu Fan , Cheng Hong , Lou Wen . Non-hierarchical Relations Extraction of Chinese Texts Based on Grammar Rules and Improved Association Rules[J]. Library and Information Service, 2013 , 57(22) : 126 -131,147 . DOI: 10.7536/j.issn.0252-3116.2013.22.020
[1] 韩婕, 向阳. 本体构建研究综述[J]. 计算机应用与软件, 2007, 24(9): 21-23.
[2] 刘萍, 胡月红. 领域本体学习方法和技术研究综述[J]. 现代图书情报技术, 2012(1): 19-26.
[3] Sahay S, Mukherjea S. Discovering semantic biomedical relations utilizing the Web[C]//Pacific Symposium on Biocomputing.New York:ACM Transactions on Knowledge Discovery from Data, 2006.
[4] Maedche A, Staab S. Discovering conceptual relations from text[C]//Proceedings of the 12th International Conference on Software and Knowledge Engineering.Chicago:Knowledge Systems Institute, 2003: 321-325.
[5] Kavalec M, Maedche A, Svatek V. Discovery of lexical entries for non-taxonomic relations in ontology learning[C]//Proceedings of SOFSEM 2004: Theory and Practice of Computer Science 2004.Berlin:Springer, 2932:249-256.
[6] Hastings P, Graesser A, Hastings K. Inferring the meaning of verbs from context[C]//Proceedings of the 20th Annual Conference of the Cognitive Science Society.Mahwah:Lawrence Erlbaum Associates, 1998: 1142-1147.
[7] 谭力, 史忠植. 基于数据挖掘的本体关系学习算法[J]. 郑州大学学报(理学版), 2008, 40(3): 40-43.
[8] 徐桂臣. 基于语义加权距离的语义相似度改进算法[J]. 情报杂志, 2012, 31(2): 119-123.
[9] Jiang Tao, Tan A H, Wang K. Mining generalized associations of semantic relations from textual Web content[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(2): 164-172.
[10] Villaverde J, Persson A, Godoy D, et al. Supporting the discovery and labeling of non-taxonomic relationships in ontology learning[J]. Expert Systems with Applications, 2009 36(7): 10288-10294.
[11] 温春, 石昭祥, 辛元. 基于扩展关联规则的中文非分类关系抽取[J]. 计算机工程, 2009, 35(24): 63-65.
[12] 谷俊, 严明, 王昊. 基于改进关联规则的本体关系获取研究[J]. 情报理论与实践, 2011, 34(12): 121-125.
[13] 黄承慧, 印鉴, 侯昉. 一种结合词项语义信息和TF-IDF方法的文本相似度量方法[J]. 计算机学报, 2011, 34(5):856-864.
/
〈 | 〉 |