Study on Model Construction of Semantic Links and Organization of Knowledge Outputs in the Research Process

  • Ma Yumeng ,
  • Zhu Zhongming
Expand
  • 1. The Lanzhou Branch of National Science Library, Chinese Academy of Sciences, Lanzhou 730000;
    2. University of Chinese Academy of Sciences, Beijing 100049

Received date: 2013-08-29

  Revised date: 2013-10-03

  Online published: 2013-11-20

Abstract

In the data-driven research environment, this paper builds a model for semantic links and organization of knowledge outputs, for digital storage area to provide long-term preservation management service of knowledge assets in the research process for the scientific research institutions. Firstly, this paper summarizes the types of knowledge outputs, data events and research events in the data-driven research environment, and constructs a model of research life cycle. Then it analyzes types of core knowledge outputs and research relationship based on this model and principles of recognizing knowledge outputs, and proposes a model framework of digital objects for effectively organizing knowledge outputs, scene entities and their relationships. Finally, it develops an ontology model of linking and organizing knowledge outputs and contextual entities by reusing, standardized type names and research relationship of ontology standards, in order to provide the basis for building the semantic layer of linking and organizing knowledge outputs in the research process.

Cite this article

Ma Yumeng , Zhu Zhongming . Study on Model Construction of Semantic Links and Organization of Knowledge Outputs in the Research Process[J]. Library and Information Service, 2013 , 57(22) : 111 -119 . DOI: 10.7536/j.issn.0252-3116.2013.22.018

References

[1] The fourth paradigm: Data-intensive scientific discovery[EB/OL].[2013-05-28]. http://iw.fh-potsdam.de/fileadmin/FB5/Dokumente/forschung/tagungen/i-science/TonyHey_-__eScience_Potsdam__Mar2010____complete_.pdf.
[2] Higgins S.The DCC curation lifecycle model[J]. The International Journal of Digital Curation, 2008, 3(1):134-140.
[3] Allard S. DataONE: Facilitating eScience through collaboration[J]. Journal of eScience Librarianship, 2012, 1(1):3-17.
[4] Humphrey C. e-Science and the life cycle of research[EB/OL].[2013-05-28].http://datalib.library.ualberta.ca/~humphrey/lifecycle-science060308.doc.
[5] Hey T, Tansley S, Tolle K. The fourth paradigm:Data-intensive scientific discovery[M]. Redmond: Microsoft Research, 2009: 147-152.
[6] University of Oxford. Digital services to support research: Appraisal of existing and future infrastructure[EB/OL].[2013-05-28]. http://damaro.oucs.ox.ac.uk/docs/Dig_Inf_to_Supp_Research_Workshop_Talk_1_13%20July%202012_vs%200%2092%20(3).pdf.
[7] Patel M. I2S2 idealised scientific research activity lifecycle model[EB/OL].[2013-05-28]. http://opus.bath.ac.uk/35186/1/I2S2_ResearchActivityLifecycleModel_110407.pdf.
[8] 罗泽, 阎保平. 青海湖区域重要野生鸟类监测与空间分布格局研究示范应用[J]. 办公自动化, 2010(18):44-48.
[9] Gold A K. Cyberinfrastructure, data, and libraries, part 1: A cyberinfrastructure primer for librarians[J/OL]. D-Lib Magazine, 2007, 13(9/10).[2013-06-10]. http://www.dlib.org/dlib/september07/gold/09gold-pt1.html.
[10] Lyon L. Dealing with data: Roles, rights, responsibilities and relationships[EB/OL].[2013-06-10].http://opus.bath.ac.uk/412/1/dealing_with_data_report%2Dfinal.pdf.
[11] Hunter J. Scientific publication packages-A selective approach to the communication and archival of scientific output[J]. International Journal of Digital Curation, 2006, 1(1):33-52.
[12] Coles S, Frey J, Hursthouse M, et al. The "end to end" crystallographic experiment in an e-Science environment: From conception to publication[C]//Proceedings of the e-Science All Hands Meeting. Nottingham:2005.
[13] 汪国平. 第八讲 仿真模拟技术及其应用[J]. 物理, 2005(08):596-602.
[14] 马明国, 晋锐, 郭建文. 寒旱区遥感观测系统试验站e-Science建设构想[J]. 科研信息化技术与应用, 2010(3):71-81.
[15] W3C. PROV Model Primer[EB/OL].[2013-06-17]. http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/.
[16] VIVO.VIVO Ontology[EB/OL].[2013-06-17].http://vivoweb.org/files/vivo-core-public-1.5.owl.
[17] DCMI. DCMI Metadata Terms[EB/OL].[2013-06-17]. http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#.
[18] Sufi S, Mathews B. CCLRC scientific metadata model: Version 2[R/OL].[2013-04-15].http://epubs.cclrc.ac.uk/bitstream/485/csmdm.version-2.pdf.
[19] National Science Board. Long-lived digital data collections: Enabling research and education in the 21st century[EB/OL].[2013-06-17].http://www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf.
[20] Green A, Macdonald S, Rice R. Policy-making for research data in repositories:A guide[EB/OL].[2013-04-15].http://pdf.aminer.org/000/222/918/distributed_data_repository_supporting_ad_hoc_collaborations.pdf.
[21] Arzberger P, Schroeder P, Beaulieu A, et al. Promoting access to public research data for scientific, economic, and social development[J]. Data Science Journal, 2004, 3(11):135-152.
[22] Shotton D, Peroni S. FaBiO, the FRBR-aligned Bibliographic Ontology[EB/OL].[2013-06-17]. http://speroni.web.cs.unibo.it/cgi-bin/lode/req.py?req=http:/purl.org/spar/fabio.
[23] Arcus B D, Giasson F. Bibliographic Ontology Specification[EB/OL].[2013-06-17]. http://bibliontology.com/specification.
[24] Bechhofer S, Ainsworth J, Bhagat J, et al. Why linked data is not enough for scientists[C]//Proceedings of the Sixth IEEE e-Science Conference, Brisbane, 2010.
[25] Moreau L, Clifford B, Freire J, et al. The Open Provenance Model Core Specification (v1.1)[EB/OL].[2013-06-10].http://eprints.soton.ac.uk/268332/1/opm.pdf.
Outlines

/