知识组织

基于特征分解的知识网络结构关系提取

  • 栾宇
展开
  • 东北师范大学信息科学与技术学院 长春 130117
栾宇(ORCID:0000-0003-3752-2470),硕士研究生;安宁(ORCID:0000-0002-9579-0150),硕士研究生;韩尚轩(ORCID:0000-0001-0962-3218),博士研究生。

收稿日期: 2018-07-10

  修回日期: 2018-11-08

  网络出版日期: 2019-04-05

基金资助

本文系国家自然科学基金面上项目"基于网络结构演化的Folksonomy模式中社群知识组织与知识涌现研究"(项目编号:71473035)研究成果之一。

Structural Relationships Extraction of Knowledge Networks Based on Eigen Decomposition

  • Luan Yu
Expand
  • School of Information Science and Technology, Northeast Normal University, Changchun 130117

Received date: 2018-07-10

  Revised date: 2018-11-08

  Online published: 2019-04-05

摘要

[目的/意义]对知识网络中结构关系的有效识别与提取,有助于从纷繁的数据中探测知识网络的拓扑结构及其演化模式。[方法/过程]本文提出一种基于邻接矩阵特征分解的知识网络结构关系提取方法。基于真实数据分别从静态结构关系提取和动态结构演化两个方面,对特征分解法和传统关联频度法进行对比分析,并与Pathfinder算法进行对比。对基于特征分解法提取知识网络结构关系的有效性进行验证。[结果/结论]研究结果表明:特征分解法能够识别原始知识网络中的主要成分信息,能够准确识别低频次的对网络整体拓扑结构较为重要的关联关系,且提取方法灵活自由。

本文引用格式

栾宇 . 基于特征分解的知识网络结构关系提取[J]. 图书情报工作, 2019 , 63(7) : 96 -104 . DOI: 10.13266/j.issn.0252-3116.2019.07.012

Abstract

[Purpose/significance] The effective identification and extraction of structural relationships in knowledge networks helps to detect the topology of knowledge networks and their evolution patterns from a wide range of data. [Method/process] This article proposes a method for extracting structural relationships in knowledge networks based on eigen decomposition of adjacency matrix. Using the real data, the eigen decomposition method and traditional correlation frequency method are compared and analyzed from static structural relationships extraction and dynamic structure evolution, and compared with the pathfinder algorithm. The validity of structural relationships extraction of knowledge networks based on eigen decomposition method is verified. [Result/conclusion] The research results show:the eigen decomposition method can identify the main component information in the original knowledge networks, the method can accurately identify the low-frequency correlations that are important to the global topology of the networks, and the extraction method is flexible and free.

参考文献

[1] LEWIS T G.网络科学:原理与应用[M].陈向阳,巨修练,等译.北京:机械工业出版社,2011.
[2] 郑金连,狄增如.复杂网络研究与复杂现象[J].系统辩证学学报,2005,13(4):8-13.
[3] KRAFFT J,QUATRARO F,SAVIOTTI P P.The knowledge-base evolution in biotechnology:a social network analysis[J].Economics of innovation and new technology,2011,20(5):445-475.
[4] CHEN C,IBEKWE-SANJUAN F,HOU J.The structure and dynamics of cocitation clusters:a multiple-perspective cocitation analysis[J].Journal of the Association for Information Science and Technology,2010,61(7):1386-1409.
[5] 赵蓉英,王菊.图书馆学知识图谱分析[J].中国图书馆学报,2011,37(2):40-50.
[6] 安宁,滕广青,白淑春,等.基于网络Hub的领域核心知识涌现研究[J].图书情报工作,2017,61(18):98-106.
[7] 邱均平,张晓培.基于CSSCI的国内知识管理领域作者共被引分析[J].情报科学,2011,29(10):1441-1445.
[8] 刘向,马费成,王晓光.知识网络的结构及过程模型[J].系统工程理论与实践,2013,33(7):1836-1844.
[9] LIEBOWITZ J.Linking social network analysis with the analytic hierarchy process for knowledge mapping in organizations[J].Journal of knowledge management,2005,9(1):76-86.
[10] KATAKIS I,TSOUMAKAS G,VLAHAVAS I.Multilabel text classification for automated tag suggestion[EB/OL].[2018-07-01].http://lpis.csd.auth.gr/publications/katakis_ecmlpkdd08_challenge.pdf.
[11] GONZALEZ-ALCAIDE G,CASTELLO-COGOLLOS L,NAVARRO-MOLINA C,et al.Library and information science research areas:analysis of journal articles in LISA[J].Journal of the American Society for Information Science and Technology,2008,59(1):150-154.
[12] ZHANG J,XIE J,HOU W,et al.Mapping the knowledge structure of research on patient adherence:knowledge domain visualization based co-word analysis and social network analysis[J].Plos one,2012,7(4):e34497.
[13] 滕广青,白淑春,韩尚轩,等.基于无标度与分形理论的层次知识网络原理解析[J].图书情报工作,2017,61(14):132-140.
[14] SCHVANEVELDT R W,DURSO F T,DEARHOLT D W.Network structures in proximity data[J].The psychology of learning and motivation,1989,24:249-284.
[15] CHEN C,MORRIS S.Visualizing evolving networks:minimum spanning trees versus pathfinder networks[C]//IEEE conference on information visualization.Washington DC:IEEE Computer Society,2003:67-74.
[16] 韩毅,童迎,夏慧.领域演化结构识别的主路径方法与高被引论文方法对比研究[J].图书情报工作,2013,57(3):11-16.
[17] AMITH M,CUNNINGHAM R,SAVAS L S,et al.Using Pathfinder networks to discover alignment between expert and consumer conceptual knowledge from online vaccine content[J].Journal of biomedical informatics,2017,74:33-45.
[18] SÁNCHEZ-FRANCO M J,MUÑOZ-EXPÓSITO M,VILLAREJO-RAMOSÁF.A knowledge structures exploration on social network sites[J].Kybernetes,2017,46(5):818-839.
[19] 马瑞敏,张欣.基于Pathfinder算法的领域知识交流主路径发现研究[J].情报学报,2016,35(8):856-863.
[20] 张云,华薇娜,袁顺波.利用引文确定领域关键文献的方法探析[J].图书情报工作,2016,60(1):66-73,82.
[21] GLEICK J.信息简史[M].高博,译.北京:人民邮电出版社,2013:409-421.
[22] 李纲,巴志超.共词分析过程中的若干问题研究[J].中国图书馆学报,2017,43(4):93-113.
[23] BRIN S,PAGE L.The anatomy of a large-scale hypertextual web search engine[J].Computer networks and ISDN systems,1998,30(1-7):107-117.
[24] FRUCHTERMAN T M J,REINGOLD E M.Graph drawing by force-directed placement[J].Software:practice and experience,1991,21(11):1129-1164.
[25] 滕广青.基于频度演化的领域知识关联关系涌现[J].中国图书馆学报,2018,44(3):79-95.
[26] MINTZ B,SCHWARTZ M.The power structure of American business[M].Chicago:University of Chicago Press,1987:224-248.
文章导航

/