[1] TANG J, WANG B, YANG Y, et al. PatentMiner:topic-driven patent analysis and mining[C]//ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2012:1366-1374.
[2] WANG B, LIU S, DING K, et al. Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis:a case study in LTE technology[J]. Scientometrics, 2014, 101(1):685-704.
[3] CHEN H, ZHANG G, LU J, et al. A fuzzy approach for measuring development of topics in patents using Latent Dirichlet Allocation[C]//IEEE international conference on fuzzy systems. Piscataway, NJ:IEEE, 2015:1116-1116.
[4] KIM M, PARK Y, YOON J. Generating patent development maps for technology monitoring using semantic patent-topic analysis[J]. Computers & industrial engineering, 2016, 98(1):289-299.
[5] SUOMINEN A, TOIVANEN H, SEPPANEN M. Firms' knowledge profiles:mapping patent data with unsupervised learning[J]. Technological forecasting & social change, 2016, 115(1):1-12.
[6] 范宇, 符红光, 文奕. 基于LDA模型的专利信息聚类技术[J]. 计算机应用, 2013, 33(S1):87-89.
[7] 王博, 刘盛博, 丁堃,等. 基于LDA主题模型的专利内容分析方法[J]. 科研管理, 2015, 36(3):111-117.
[8] 吴菲菲, 张亚茹, 黄鲁成,等. 基于AToT模型的技术主题多维动态演化分析——以石墨烯技术为例[J]. 图书情报工作, 2017,1(5):95-102.
[9] 廖列法, 勒孚刚. 基于LDA模型和分类号的专利技术演化研究[J]. 现代情报, 2017, 37(5):13-18.
[10] 陈亮, 张静, 张海超,等. 层次主题模型在技术演化分析上的应用研究[J]. 图书情报工作, 2017,1(5):103-108.
[11] WALLACH H M. Topic modeling:beyond bag-of-words[C]//International conference on machine learning. New York:ACM, 2006:977-984.
[12] WANG X, MCCALLUM A, WEI X. Topical N-grams:phrase and topic discovery, with an application to information retrieval[C]//IEEE international conference on data mining. Piscataway, NJ:IEEE, 2007:697-702.
[13] LINDSEY R V, Headden Ⅲ W P, STIPICEVIC M J. A phrase-discovering topic model using hierarchical Pitman-Yor processes[C]//Joint conference on empirical methods in natural language processing and computational natural language learning. Stroudsburg, PA:ACL,2012:214-222.
[14] DANILEVSKY M, WANG C, DESAI N, et al. Automatic construction and ranking of topical keyphrases on collections of short documents[C]//Proceedings of the 2014 SIAM international conference on data mining. Philadelphia, PA:SIAM,2014:398-406.
[15] El-KISHKY A, SONG Y, VOSS C R, et al. Scalable topical phrase mining from text corpora[J]. Proceedings of the VLDB endowment, 2014, 8(3):305-316.
[16] 张琴, 张智雄. 基于PhraseLDA模型的主题短语挖掘方法研究[J]. 图书情报工作, 2017,61(8):120-125.
[17] HEINRICH G. A generic approach to topic model[M]//Machine learning knowledge discovery in databases. Berlin:Springer, 2009:517-532.
[18] ZIPF G K. Selected studies of the principle of relative frequency in language[J]. Language, 1933, 9(1):89-92.
[19] 韩红旗, 朱东华, 汪雪锋. 专利技术术语的抽取方法[J]. 情报学报, 2011, 30(12):1280-1285.
[20] 徐川, 施水才, 房祥,等. 中文专利文献术语抽取[J]. 计算机工程与设计, 2013, 34(6):2175-2179.
[21] FRANTZI K, ANANIADOU S, MIMA H. Automatic recognition of multi-word terms:. the C-value/NC-value, method[J]. International journal on digital libraries, 2000, 3(2):115-130.
[22] SPASIC I, GREENWOOD M, PREECE A, et al. FlexiTerm:a flexible term recognition method[J]. Journal of biomedical semantics, 2013, 4(1):27-42.
[23] MAYNARD D, ANANIADOU S. Identifying terms by their family and friends[C]//Conference on computational linguistics. Stroudsburg, PA:ACL, 2000:530-536.
[24] 李超, 王会珍, 朱慕华,等. 基于领域类别信息C-value的多词串自动抽取[J]. 中文信息学报, 2010, 24(1):94-99.
[25] 刘里, 刘小明. 基于分隔符和上下文术语的领域现象术语抽取[J]. 华南理工大学学报(自然科学版), 2011, 39(7):146-149.
[26] 胡阿沛, 张静, 刘俊丽. 基于改进C-value方法的中文术语抽取[J]. 现代图书情报技术, 2013, 29(2):24-29.
[27] 张杰, 张海超, 翟东升. 面向中文专利权利要求书的分词方法研究[J]. 现代图书情报技术, 2014, 30(9):91-98.
[28] MAHMOUD H. Polya urn models[M]. New York:Champman & Hall/CRC, 2009.
[29] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(1):993-1022.
[30] GRIFFITHS T L, STEYVERS M. Finding scientific topics[J]//Proceedings of the national academy of Science, 2004, 1(1):5228-5235.
[31] MIMNO D, WALLACH H M, TALLEY E, et al. Optimizing semantic coherence in topic models[C]//Proceedings of the conference on empirical methods in natural language processing. Stroudsburg, PA:ACL, 2011:262-272.
[32] CHEN Z, MUKHERJEE A, LIU B, et al. Leveraging multi-domain prior knowledge in topic models[C]//International joint conference on artificial intelligence. Menlo Park, CA:AAAI, 2013:2071-2077.
[33] CHEN Z, MUKHERJEE A, LIU B, et al. Discovering coherent topics using general knowledge[C]//ACM international conference on information & knowledge management. New York:ACM, 2013:209-218.
[34] CHEN Z, LIU B. Mining topics in documents:standing on the shoulders of big data[C]//ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2014:1116-1125.
[35] 孙锐, 郭晟, 姬东鸿. 融入事件知识的主题表示方法[J]. 计算机学报, 2017, 40(4):791-804.