[1] WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning[J]. Journal of big data, 2016, 3(1):1-40.
[2] TAHMORESNEZHAD J, HASHEMI S. Visual domain adaptation via transfer feature learning[J]. Knowledge and information systems, 2017, 50(2):1-21.
[3] BIFET A, PECHENIZKIY M, BOUCHACHIA A.A survey on concept drift adaptation[J]. ACM computing surveys, 2014, 46(4):1-44.
[4] BARDDAL J P, GOMES H M, ENEMBRECK F, et al. A survey on feature drift adaptation:definition, benchmark, challenges and future directions[J]. Journal of systems and software, 2016,127:278-294.
[5] VAPNIK V, IZMAILOV R. Knowledge transfer in SVM and neural networks[J]. Annals of mathematics and artificial Intelligence, 2017,80(1-2):3-19.
[6] 徐军, 丁宇新, 王晓龙. 使用机器学习方法进行新闻的情感自动分类[J]. 中文信息学报, 2007, 21(6):95-100.
[7] 吴应良, 黄媛, 王选飞. 在线中文用户评论研究综述:基于情感计算的视角[J]. 情报科学, 2017(6):159-163.
[8] BLITZER J, MCDONALD R, PEREIRA F. Domain adaptation with structural correspondence learning[C]//Conference on empirical methods in natural language processing. Stroudsburg, PA, USA:Association for Computational Linguistics, 2006:120-128.
[9] PAN S J, NI X, SUN J T, et al. Cross-domain sentiment classification via spectral feature alignment[C]//International conference on World Wide Web, WWW 2010, Raleigh, North Carolina, U.S.A., April. DBLP, 2010:751-760.
[10] DAI W, YANG Q, XUE G R, et al. Boosting for transfer learning[C]//International conference on machine learning. New York, NY, USA:ACM, 2007:193-200.
[11] 马凤闸, 吴江宁, 杨光飞. 基于双重选择策略的跨领域情感倾向性分析[J]. 情报学报, 2012, 31(11):1202-1209.
[12] GLOROT X, BORDES A, BENGIO Y. Domain adaptation for large-Scale sentiment classification:a deep learning approach[C]//International conference on machine learning. Madison, WI, USA:Omnipress,2011:1-9.
[13] SUN M, TAN Q, DING R, et al. Cross-domain sentiment classification using deep learning approach[C]//International conference on cloud computing and intelligence systems. New York, NY, USA:IEEE, 2015:60-64.
[14] 吕韶华, 杨亮, 林鸿飞. 基于SimRank的跨领域情感倾向性分析算法研究[J]. 中文信息学报, 2012, 26(6):38-44.
[15] 魏现辉, 张绍武, 杨亮,等. 基于加权SimRank的跨领域文本情感倾向性分析[J]. 模式识别与人工智能, 2013, 26(11):1004-1009.
[16] 张志武. 跨领域迁移学习产品评论情感分析[J]. 现代图书情报技术, 2013(6):49-54.
[17] 黄瑞阳, 康世泽. 一种改进EM算法的跨领域情感分类方法[J]. 计算机应用研究, 2017, 34(9):2696-2699.
[18] XIA R, ZONG C, HU X, et al. Feature ensemble plus sample selection:domain adaptation for sentiment classification[J]. IEEE intelligent systems, 2013, 28(3):10-18.
[19] DESHMUKH J S, TRIPATHY A K. Entropy based classifier for cross-domain opinion mining[J]. Applied computing and informatics, 2017,14(1):55-64.
[20] TANG D, QIN B, LIU T. Deep learning for sentiment analysis:successful approaches and future challenges[J]. Wiley interdisciplinary reviews data mining and knowledge discovery, 2015, 5(6):292-303.
[21] 余传明, 冯博琳, 安璐. 基于深度表示学习的跨领域情感分析[J]. 数据分析与知识发现, 2017(7):73-81.
[22] YU J, JIANG J. Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification[C]//Conference on empirical methods in natural language processing. Stroudsburg, PA, USA:ACL,2016:236-246.
[23] 吴斐, 张玉红, 胡学钢. 面向评论信息的跨领域词汇情感倾向判别方法[J]. 计算机科学, 2015, 42(6):220-222.
[24] 冯超, 梁循,李亚平,等. 基于词向量的跨领域中文情感词典构建方法[J]. 数据采集与处理, 2017, 32(3):579-587.
[25] DENECKE K. Are SentiWordNet scores suited for multi-domain sentiment classification?[C]//International conference on digital information management. New York, NY, USA:IEEE, 2009:1-6.
[26] GRAVES A. Supervised sequence labelling with recurrent neural networks[M].Berlin, Heidelberg:Springer, 2012.
[27] SUTSKEVER I, VINYALS O, Le Q V. Sequence to sequence learning with neural networks[EB/OL].[2017-06-30]. https://arxiv.org/pdf/1409.3215.
[28] JOZEFOWICZ R, VINYALS O, SCHUSTER M, et al. Exploring the limits of language modeling[EB/OL].[2017-06-30]. https://arxiv.org/pdf/1602.02410.
[29] DAN G, BRUNK C, VINYALS O, et al. Multilingual language processing from bytes[EB/OL].[2017-06-30]. https://arxiv.org/pdf/1512.00103.
[30] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell:a neural image caption generator[C]//IEEE Conference on Computer Vision and Pattern Recognition. New York, NY, USA:IEEE, 2015:3156-3164.
[31] YAO Y, HUANG Z. Bi-directional LSTM recurrent neural network for Chinese word segmentation[C]//International Conference on Neural Information Processing. Cham, Switzerland:Springer, 2016:345-353.
[32] CROSS J, HUANG L. Incremental parsing with minimal features using Bi-Directional LSTM[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA:ACL, 2016:32-37.
[33] PLANK B, SØGAARD A, GOLDBERG Y. Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA:ACL, 2016:1-7.
[34] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley interdisciplinary reviews computational statistics, 2010, 2(4):433-459.
[35] ULLRICH C. Support vector classification[M]//Forecasting and hedging in the foreign exchange markets. Berlin Heidelberg:Springer, 2009:345-356.
[36] MENARD S. Applied logistic regression analysis[J]. Technometrics, 2002, 38(2):184-186.
[37] LANDGREBE D. A survey of decision tree classifier methodology[J]. IEEE transactions on systems man and cybernetics, 2002, 21(3):660-674.
[38] BREIMAN L. Random Forest[J]. Machine learning, 2001, 45(1):5-32.
[39] JORDAN S J, VIVIAN A, WOHAR M E. Forecasting market returns:bagging or combining?[J]. International journal of forecasting, 2017, 33(1):102-120.
[40] WANG J, GAO L, ZHANG H, et al. Adaboost with SVM-based classifier for the classification of brain motor imagery tasks[C]//International conference on universal access in human-computer interaction:users diversity. Berlin Heidelberg:Springer-Verlag, 2011:629-634.
[41] LAI S, LIU K, HE S, et al. How to generate a good word embedding[J]. IEEE intelligent systems, 2016, 31(6):5-14.
[42] DYER C, BALLESTEROS M, WANG L, et al. Transition-based dependency parsing with stack long short-term memory[J]. Computer science, 2015, 37(2):321-332.
[43] WANG J, YU L C, LAI K R, et al. Dimensional sentiment analysis using a regional CNN-LSTM model[C]//Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA:ACL, 2016:225-230.