[目的/意义]探索领域知识网络中的核心知识涌现有助于揭示知识发展的内在机理,对于掌握领域知识发展脉络以及发展模式具有重要意义。[方法/过程]以复杂网络的思想为基础,基于关键词的邻接关系构建领域知识网络。采用Hub涌现的分析方法,对领域知识网络从时间序列上进行动态跟踪与分析。从知识节点的度序列分布、熵值分析、特定节点涌现3个方面对领域知识网络的知识涌现现象进行分析。[结果/结论]研究结果表明:领域核心知识涌现过程中随机性与非随机性交互影响;领域核心知识涌现在总体上呈现由随机性主导到结构性主导的演进趋势;领域中涌现出的核心知识并非是一劳永逸一成不变的。
[Purpose/significance] Exploring the emergence of core knowledge in the domain knowledge network can help to reveal the inherent mechanism of knowledge development, which is of great significance to master the context and mode of knowledge development.[Method/process] Based on the idea of the complex network, the domain knowledge networks were constructed based on the adjacency relation of keywords. By using the analysis method of the hub emergence, the domain knowledge networksweredynamically tracked and analyzed along the time series. This article analyzed the knowledge emergence of the domain knowledge networks from three aspects——the degree distribution of knowledge nodes, the entropy analysis, and the emergence of the specific node.[Result/conclusion] The results show:the randomness and non-randomness affect each other in the process of the emergence of core knowledge; the emergence of core knowledge shows the evolving trend from randomness dominant to structure dominant; the emerging core knowledge is not once and for all.
[1] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[2] LEE P C, SU H N, CHAN T Y. Assessment of ontology-based knowledge network formation by vector-space model[J]. Scientometrics, 2010, 85(3):689-703.
[3] CHOI J, YI S, LEE K C. Analysis of keyword networks in MIS research and implications for predicting knowledge evolution[J]. Information & management, 2011, 48(8):371-381.
[4] YI S, CHOI J. The organization of scientific knowledge:the structural characteristics of keyword networks[J]. Scientometrics, 2012, 90(2):1015-1026.
[5] KHO J, CHO K, CHO Y. A study on recent research trend in management of technology using keywords network analysis[J]. Journal of intelligence and information systems, 2013, 19(2):101-123.
[6] 马费成, 刘旻璇. 知识网络的结构、演化及热点探测——CSSCI(1998-2011)经济学文献计量分析[J]. 情报科学, 2014(7):3-8.
[7] 朱丹浩, 王东波, HASSAN S-UI, HADDAWY P. 知识组织视角下关键词网络中的小世界现象[J]. 图书与情报, 2013(6):19-22, 72.
[8] 滕广青, 贺德方, 彭洁, 等. 基于网络中心性的领域知识动态演化研究[J]. 图书情报工作,2016, 60(14):128-134, 141.
[9] 郑彦宁, 许晓阳, 刘志辉. 基于关键词共现的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(4):85-92.
[10] ANDERSON P. Complexity theory and organization science[J]. Organization science, 1999, 10(3):216-232.
[11] HOLLAND J. 涌现-从混沌到有序[M]. 陈禹, 等译. 上海:上海科学技术出版社, 2002:1-2.
[12] MCCARTHY I P, TSINOPOULOS C, ALLEN P, et al. New product development as a complex adaptive system of decisions[J]. Journal of product innovation management, 2006, 23(5):437-456.
[13] 王文平, 张兵. 动态关系强度下知识网络知识流动的涌现特性[J]. 管理科学学报, 2013 (2):1-11.
[14] 王凤彬, 陈建勋. 跨层次视角下的组织知识涌现[J]. 管理学报, 2010(1):17-23.
[15] 花燕锋, 张龙革. 知识涌现系统运行机制的模型建构[J]. 现代情报, 2014 (7):50-55.
[16] MA J J, ZENG D, HUFF R A. Complex network analysis[J]. Journal of international technology and information management.2013, 22(4):99-112.
[17] LEWIS T G. 网络科学:原理与应用[M]. 陈向阳, 巨修练,等译. 北京:机械工业出版社, 2011:142-150.
[18] Scale-free network[EB/OL].[2017-04-01]. https://en.wikipedia.org/wiki/Scale-free_network.
[19] NEWMAN M E J. 网络科学引论[M]. 郭世泽,等译. 北京:电子工业出版社, 2014:157-170.
[20] SHIRI A. Folksonomies:indexing and retrieval in web 2.0[J]. Intelligent system, 2012(5):79-90.
[21] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[22] 滕广青, 贺德方, 彭洁, 等. 基于网络演化的领域知识群落生长机制研究[J]. 情报理论与实践, 2016, 39(10):16-20, 15.