[目的/意义]对科学数据用户相关性线索与标准间关系进行研究,探索数据选择过程中线索与标准发挥的作用,从而为开发智能搜索引擎,提高检索效率提供依据。[方法/过程]选取36名农业领域的研究生,通过出声思考、全程录像和事后访谈的方法研究他们的科学数据检索行为,并使用扎根理论的方法对行为记录报告进行分析。[结果/结论]识别了用户相关性判断使用的科学数据特征集合,建立了科学数据相关性线索集和标准集。在此基础上,构建了科学数据线索与标准间映射关系,初步探索了科学数据用户相关性线索与标准的使用模式。
[Purpose/significance] This paper focuses on the relationship between scientific data user relevance criteria and clues, so as to provide a basis for intelligent search engine design and improving the retrieval efficiency. [Method/process] This study selected 36 agricultural graduate students, studying their scientific data retrieval behavior by thinking aloud, video recording and the interview method. The data were analyzed by the grounded theory. [Result/conclusion] The paper identifies a set of scientific data features used for relevance judgment, and established scientific data user relevance clue set and criterion set. On this basis, the paper constructs the mapping relationship between scientific data clues and criteria, and explores the usage patterns of scientific data users' relevance clues and criteria.
[1] 中华人民共和国科学技术部. SDS/T1003-2004, 科学数据共享工程技术标准[EB/OL].[2016-04-19]. http://www.docin.com/p-149852222.html.
[2] SCHAMBER L. Users' criteria for evaluation in multimedia information seeking and use situations[D]. Syracuse:Syracuse University, 1991.
[3] WANG P, SOERGEL D. A cognitive model of document use during a research project. Study I. Document selection[J]. Journal of the American Society for Information Science, 1998, 49(2), 115-133.
[4] MARKKULA M, SORMUNEN E. End-user searching challenges indexing practices in the digital newspaper photo archive[J]. Information retrieval, 2000,1(4):259-285.
[5] TOMBROS A, RUTHVEN I, JOSE J M. Searchers' criteria for assessing web pages[C]//Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2003:385-386.
[6] RATH G J, RESNICK A, SAVAGE T R. Comparisons of four types of lexical indicators of content[J]. American documentation, 1961, 12(2):126-130.
[7] KENT A, BELZER J, KURFEEST M, et al. Relevance predictability in information retrieval systems[J]. Methods information in medicine, 1967, 6(2):45-51.
[8] MARCUS R, KUGEL P, BENENFELD A. Catalog information and text as indicators of relevance[J]. Journal of the American Society for Information Science, 1978, 29(1), 15-30.
[9] JANES W. Relevance judgments and the incremental presentation of document representations[J]. Information processing & management, 1991, 27(6):629-646.
[10] BARRY C L. Document representations and clues to document relevance[J]. Journal of the American Society for Information Science, 1998, 49(14):1293-1303.
[11] LAPLANTE A. Users' relevance criteria in music retrieval in everyday life:an exploratory study[EB/OL].[2016-03-20]. http://www.ismir2010.ismir.net/proceedings/ismir2010-103.pdf.
[12] ROUET J F, ROS C, GOUMI A, et al. The influence of surface and deep cues on primary and secondary school students' assessment of relevance in Web menus[EB/OL].[2016-03-09]. https://www.researchgate.net/publication/228341965.
[13] WATSON C. An exploratory study of secondary students' judgments of the relevance and reliability of information[J]. Journal of the Association for Information Science and Technology, 2014,65(7):1385-1408.
[14] LAWLEY K N. Information seeking in context:teachers' content selection during lesson planning using the Shoah Foundation's Visual History Archive of Holocaust survivor testimony[D]. College Park:University of Maryland, 2011.
[15] COOL C, BELKIN N, FRIEDER O, et al. Characteristics of text affecting relevance judgments[J].Automotive news, 1993, 17(4):77-84.
[16] ERICSSON K A, SIMON H A. Protocol analysis:verbal reports as data[M]. Cambridge, MA:The MIT Press, 1993.
[17] KRIPPENDORFF K. Content analysis:an introduction to its methodology[M]. Beverly Hills, CA:Sage, 1980.