[目的/意义] 从细粒度角度深化科技文本的内容语义描述,弥补目前文本知识对象特征描述粒度较粗且缺乏语义的不足,为知识重组与挖掘,提供精细化的用户知识服务给予一种思路。[方法/过程] 以知识元理论为基础,通过对科技文本内部属性的语义分析,尝试构建细粒度的科技文本内容描述框架,给出两个实例并讨论。[结果/结论] 该内容描述框架实现了检索结果从海量的文献单元聚焦到精准化的知识元的转变。
[Purpose/significance] We attempt to deepen the content semantics description of scientific text from the fine-grained perspective, make up the deficiencies which text knowledge object characterization is coarse and lack of semantic currently, andgive a way of thinking for knowledge reorganization, mining and refinement of the user knowledge service.[Method/process] Based on the knowledge element theory and the semantic analysis of the internal attributes of the scientific text, we attempted to construct a fine-grained content description framework of scientific text knowledge object and give two examples and discussion.[Result/conclusion] The content description framework realizes the transformation of the search results from the massive document unit to the precise knowledge element.
[1] 冯儒佳,王忠义,王艳凤.科技论文的多粒度知识组织框架研究[J].情报科学,2016(12):46-50,54.
[2] 焦玉英.符绍宏.何绍华.信息检索[M].武汉:武汉大学出版社,2008.
[3] 温有奎.徐国华.知识元挖掘[M].西安:西安电子科技大学出版社,2005.
[4] 温有奎.焦玉英.基于知识元的知识发现[M].西安:西安电于科技大学出版社,2011:93.
[5] 姜永常.基于知识元语义链接的知识网络构建[J].情报理论与实践,2011(5):50-53,45.
[6] 温有奎,焦玉英.知识元语义链接模型研究[J].图书情报工作,2010,54(12):27-31.
[7] 王颖,张智雄,孙辉. 国史知识的语义揭示与组织方法研究[J].中国图书馆学报,2015(4):55-64.
[8] XU H,FAUSTO G.SKOtypes: an entity-based scientific knowledge objects metadata schema[J]. Journal of knowledge management,2015,19(1):60-70.
[9] JEONG S, KIM H H, PARK Y R, et al. Clinical data element ontology for unified indexing and retrieval of data elements across multiple metadata registries[J].Healthcare informatics research,2014,20(4):295-303.
[10] KORTELAINEN J, MIKKOLA A. Semantic restrictions and rules in applications of multibody dynamics[J].Engineering with computers,2015,31(1):85-97.
[11] MITCHELL E T. Building blocks of linked open data in libraries[J].Library technology reports,2013,49(5):11-24.
[12] ISAAC A, BAKERT. Linked data practice at different levels of semantic precision: the perspective of libraries, archives and museums [J].Bulletin of the American Society for Information Science and Technology,2015,41(4):34-39.
[13] OARDD W, LEVI A S, PUNZALAN R L. Bridging communities of practice: emerging technologies for content centered linking[EB/OL].[2017-01-03].https://terpconnect.umd.edu/~oard/pdf/mw2014.pdf.
[14] MARDENJ, LI-MADEOC, WHYSELN, et al. Linked open data for cultural heritage: evolution of an information technology[EB/OL].[2017-01-03].http://dl.acm.org/citation.cfm?id=2507103.
[15] OSINSKI S, WEISS D. Concept-driven algorithm for clustering search results[J].IEEE intelligent systems,2005,20(3):45-51.
[16] FARALLI S, PONZETTO S P. DWS at the 2016 open knowledge extraction challenge: a hearst-like pattern-based approach to hypernym extraction and classinduction[EB/OL].[2017-01-03]https://link.springer.com/chapter/10.1007/978-3-319-46565-4_4#aboutcontent.
[17] 张智雄,张晓林,刘建华,等.网络科技信息结构化监测的思路和技术方法实现[J].中国图书馆学报,2014(4):4-15.
[18] 温有奎,焦玉英.Wiki知识元语义图研究[J].情报学报,2009,28(6):870-877.
[19] 胡昌平,林鑫,陈果,等.科技文献副主题词抽取及其在分面检索中的应用[J].情报学报,2014(8):836-843.
[20] 吴江宁,张红卫,王舒,等.基于科技文献的时序主题链构建方法[J].科学学研究,2014,32(9):1306-1312,1321.
[21] 刘勘,朱芳芳.基于潜在语义索引的科技文献主题挖掘[J].计算机工程与应用,2014(24):113-117,150.
[22] 陈永恒,左万利,林耀进,等.作者标签主题模型在科技文献中的应用[J].计算机应用,2015,35(4):1001-1005.
[23] 张晗,徐硕,乔晓东,等.融合科技文献内外部特征的主题模型发展综述[J].情报学报,2014(10):1108-1120.
[24] 王宁,刘海园.基于知识元的突发事件情景演化混合推理模型[J].情报学报,2016,35(11):1197-1207.
[25] 杨选辉,李晚照,谷艳红.基于知识元的教学资源组织模式的构建研究[J].图书情报知识,2016(1):101-107.
[26] 高国伟,王亚杰,李佳卉.基于知识元的知识库架构模型研究[J].情报科学,2016(3):37-41.
[27] 边文越,李泽霞,冷伏海.构建包含知识元分析的科技前沿情报分析框架——以研究甲烷直接制乙烯为例[J].图书情报工作,2016,60(10):87-94.
[28] 周智昊.资源描述框架的形式化表示问题研究[J].华中农业大学学报(社会科学版),2007(4):97-101.
[29] 白华.基于SKOS方法的分类法本体描述研究[J].图书情报工作,2012,56(1):120-124,147.
[30] 徐静."资源描述与检索"内容框架演变的历程分析[J].图书与情报,2011(5):12-16.
[31] 姚东旻,李军林.条件满足下的效率差异:PPP模式与传统模式比较[J].改革,2015(2):34-42.
[32] 化柏林.学术论文中方法知识元的类型与描述规则研究[J].中国图书馆学报,2016(1):30-40.
[33] 袁建国,后青松,程晨.企业政治资源的诅咒效应——基于政治关联与企业技术创新的考察[J].管理世界,2015(1):139-155.
[34] DIJKSTRA T K, HENSELER J. Consistent partial least squares path modeling[J].MIS quarterly,2015,39(2):297-335.