[目的/意义] 基于已有的评价指标体系,建立图书馆成效(绩效)评估的投影寻踪分类(PPC)模型,厘清各个评价指标与图书馆成效(绩效)之间的影响关系及其重要性,对图书馆成效(绩效)高低进行排序,提出提升图书馆成效(绩效)的措施和建议。[方法/过程] 根据抽样得到的图书馆实际调查评价指标数据,编制基于群智能乌鸦搜索算法的PPC模型程序,选取合理的窗宽半径值,建立求得真正全局最优解的图书馆成效(绩效)评价PPC模型、投影向量及其系数和样本投影值。[结果/结论] PPC模型能够同时完成确定各个评价指标的权重和构建图书馆成效(绩效)评价函数,具有客观性好、结构简单、数学意义清晰和后续应用便捷等特点,评价结果与专家评价法结果基本一致,说明PPC模型能很好地应用于图书馆成效(绩效)评估研究,为图书馆成效(绩效)评估提供新方法。
[Purpose/significance] Based on the established evaluation indexes for the library outcomes (performances), the projection pursuit clustering (PPC) model is applied to evaluate the library outcomes (performances), to clarify the influence relationship between the evaluation index and the library outcomes (performances), to rank the library outcomes (performances), and thus to put forward the measurement improving the library outcomes (performances).[Method/process] According to the collected sample data of the library outcomes (performances), the Matlab program of the PPC model based on swarm intelligence crow search algorithm is developed. The reasonable cutoff value is taken. The PPC model of the library outcomes (performances) with the real global optimization, the projection vector as well as its coefficient, and the projection value of the samples are established.[Result/conclusion] The projection vector coefficient of each evaluation index and the evaluation function or the scores of the library outcomes (performances) are simultaneously obtained by optimizing the PPC model. The PPC model possesses the characteristics of the simple structure, the good objective, the clear mathematical meaning, and the good convenience to apply the PPC model. The rank and the classification of the library outcomes (performances) using PPC model are good agreement with the results according to the experts. It is approved that the PPC model is applicable, effective and a new method to the library outcomes (performances) evaluation.
[1] RUBIN R J. Demonstrating results:using outcome measurement in your library[M]. Chicago:American Library Association, 2006:20-31.
[2] 张红霞. 国际图书馆服务质量评价:绩效评估与成效评估两大体系的形成与发展[J].中国图书馆学报, 2009(1):78-85.
[3] 黄婧. 国外高校图书馆成效评估研究及对我国的启示[J]. 图书情报工作, 2011, 55(23):61-64.
[4] 刘桂宾. 图书馆成效评估实证研究[J]. 图书馆工作与研究, 2015(12):34-38.
[5] Task force on academic library outcome assessment report[EB/OL].[2016-12-05].http://www.ala.org/acrl/publications/whitepapers/taskforceacademic.
[6] Standards for libraries in higher education[EB/OL].[2016-12-05]. http://www.ala.org/acrl/standards/standardslibraries.
[7] 张妍妍, 王敏. 2002-2010年图书馆绩效评估研究文献计量分析[J]. 新世纪图书馆, 2011(10):75-78.
[8] 张秀华, 高伟. 基于GA-BPNN组合模型的图书馆绩效评价及实证研究[J].情报学报, 2012, 31(8):890-896.
[9] 向远媛, 温国强. 大学图书馆成效评估及其指标体系构建探索[J]. 大学图书馆学报, 2011(1):11-16.
[10] 赵伟, 张秀华. 基于遗传神经网络的图书馆成效评估研究[J]. 情报理论与实践, 2013, 36(12):94-98.
[11] 范超. 高校图书馆绩效评估[D]. 大连:大连海事大学, 2012.
[12] 袁明英. 高校图书馆绩效评估指标体系及方法[J]. 图书馆学刊, 2005(5):24-26.
[13] 岳国威. 河北省县市级公共图书馆绩效评价研究[D]. 石家庄:河北科技大学, 2014.
[14] 楼文高. 基于神经网络的金融风险预警模型及其实证研究[J]. 金融论坛, 2011(11):52-61.
[15] 楼文高. 活性污泥工艺神经网络模拟与控制研究[D]. 上海:同济大学, 2005.
[16] 楼文高, 刘遂庆. 活性污泥系统神经网络建模与仿真研究[J]. 环境污染与防治, 2005, 27(9):704-707.
[17] Electronic statistics textbook[EB/OL].[2016-10-08]. http://www.statsoft.com/textbook.
[18] ZHANG G, PATUWO E, HU M. Forecasting with artificial neural networks:the state of the art[J]. International journal of forecasting, 1998(14):35-62.
[19] ISO 11620:2008. Information and documentation-library performance indicators[S]. Geneva:International Organization for Standardization, 2008.
[20] 国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T29182-2012/ISO111620:2008信息与文献:图书馆绩效指标[S]. 北京:中国标准化出版社, 2012.
[21] 李建霞. 省域公共图书馆绩效的DEA测算与评价[J]. 图书馆论坛, 2008, 28(4):49-52.
[22] ISO/TR 20983:2003. Information and documentation-Performance indicators for electronic library[S]. Geneva:International Organization for Standardization, 2013.
[23] 姜晓. 图书馆绩效评估方法评析[J]. 大学图书馆学报, 2004(1):6-9.
[24] 蒋恩智. 美国公共图书馆协会绩效指标评估模型构建项目研究[J].图书馆学研究, 2015(6):76-78.
[25] 于晓虹, 楼文高, 于秀荣. 中国省际普惠金融发展水平综合评价与实证研究[J]. 金融论坛, 2016(5):18-32.
[26] 虞玉华, 楼文高. 体育类期刊学术水平综合评价与实证研究[J]. 北京体育大学学报, 2015, 38(12):46-54.
[27] TABACHNICK B G, FIDELL L S. Using multivariate statistics[M]. Boston:Pearson Education, Inc., 2013:616-620.
[28] Predict the complete solution for neural data modeling user guide[EB/OL].[2016-10-08]. http://www.neuralware.com.
[29] 李美文, 林玉蕊. 基于投影寻踪的图书馆评估模型及其应用[J]. 中国中医药图书情报杂志, 2014, 38(5):17-20.
[30] 楼文高, 乔龙. 投影寻踪分类建模理论的新探索与实证研究[J]. 数理统计与管理, 2015, 34(1):47-58.
[31] FRIEDMAN J H, TUKEY J W. A projection pursuit algorithm for exploratory data analysis[J]. IEEE transactions on computers, 1974, c-23(9):881-890.
[32] ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems:crow search algorithm[J]. Computers & structures, 2016, 169(6):1-12.
[33] 楼文高, 王广雷, 冯国珍. 旅游安全预警TOPSIS评价研究及其应用[J]. 旅游学刊, 2013, 28(4):66-74.
[34] 蒲筱哥, 刘礼明. 数据库绩效的变异系数与灰色关联度分析及实证研究[J]. 图书情报工作, 2014, 58(14):71-78.