情报研究

群体动力学方法在不同引证网络中探测新趋势的效能差异

  • 万小萍 ,
  • 刘向
展开
  • 华中师范大学信息管理学院 武汉 430079
万小萍(ORCID:0000-0003-4500-4120),博士研究生。

收稿日期: 2016-09-30

  修回日期: 2017-03-17

  网络出版日期: 2017-04-20

基金资助

国家自然科学基金项目"专利引证网络中创新节点的浮现与长期演化研究"(项目编号:71673106)和国家自然科学基金青年项目"专利网络中群体行为视角的科技创新趋势涌现研究"(项目编号:71303090)

Different Performance of Collective Dynamics Method for Detecting Trends Between Different Citation Networks

  • Wan Xiaoping ,
  • Liu Xiang
Expand
  • School of Information Management, Central China Normal University, Wuhan 430079

Received date: 2016-09-30

  Revised date: 2017-03-17

  Online published: 2017-04-20

摘要

[目的/意义]针对采用不同引证网络探测新兴趋势的问题,比较群体动力学方法用于直接引证网络和文献耦合网络上的效能差异。[方法/过程]首先构建并分析直接引证网络、文献耦合网络和同被引网络的特征,然后基于群体动力学方法对文献耦合网络进行实证研究。[结果/结论]对比以往的研究结果发现:群体动力学方法作用于直接引证网络进行新兴趋势的预测结果较基线方法为好,而在文献耦合网络中预测的效果并不比基线方法更佳。

本文引用格式

万小萍 , 刘向 . 群体动力学方法在不同引证网络中探测新趋势的效能差异[J]. 图书情报工作, 2017 , 61(8) : 74 -80 . DOI: 10.13266/j.issn.0252-3116.2017.08.009

Abstract

[Purpose/significance] This paper compares the performance of direct citation network and bibliographic coupling network for detecting emerging trends with collective dynamics method. [Method/process] First, we analyzed the characteristics and the difference on emerging trends detection of three kinds of knowledge networks:direct citation, bibliographic coupling and co-citation network. Then, an empirical study on bibliographic coupling network was performed based on the emerging trends detection model of collective dynamics. [Result/conclusion] Compared with previous studies, it is found that the prediction result of collective dynamics method on the direct citation network is priority to the result of baseline method on the same network, but in terms of the bibliographic coupling network, the collective dynamics method shows no priority to the baseline method.

参考文献

[1] GARFIELD E. Citation indexes for science[J]. Science, 1956, 123(3185):61-62.
[2] 陈超美. CiteSpace Ⅱ:科学文献中新趋势与新动态的识别与可视化[J]. 情报学报, 2009, 28(3):401-421.
[3] GARFIELD E, MERTON R K. Citation indexing:its theory and application in science, technology, and humanities (Vol. 8)[M]. New York:Wiley, 1979.
[4] PRICE D J. Networks of scientific papers[J]. Science, 1965, 149(3683):510-515.
[5] LIU X, MA F C. Transfer and distribution of creative activity for bio-scientist in knowledge spaces[J]. Scientometrics, 2013, 95(1):299-310.
[6] FUJITA K, KAJIKAWA Y, MORI J, et al. Detecting research fronts using different types of weighted citation networks[C]//Technology management for emerging technologies. Columbia:IEEE, 2012:267-275.
[7] SERENKO A, DUMAY J. Citation classics published in knowledge management journals. Part Ⅱ:studying research trends and discovering the Google Scholar effect[J]. Journal of knowledge management, 2015, 19(6):1335-1355.
[8] ZHAO D, STROTMANN A. The knowledge base and research front of information science 2006-2010:an author cocitation and bibliographic coupling analysis[J]. Journal of the Association for Information Science and Technology, 2014, 65(5):995-1006.
[9] 陈悦, 刘则渊. 悄然兴起的科学知识图谱[J]. 科学学研究, 2005, 23(2):149-154.
[10] 赵蓉英, 邱均平. 知识网络研究(I)——知识网络概念演进之探究[J]. 情报学报, 2007, 26(2):198-209.
[11] 刘向, 马费成, 陈潇俊, 等. 知识网络的结构与演化:概念与理论进展[J]. 情报科学, 2011, 29(6):801-809.
[12] SHIBATA N, KAJIKAWA Y, TAKEDA Y, et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the American Society for Information Science and Technology, 2009, 60(3):571-580.
[13] BOYACK K W, KLAVANS R. Co-Citation analysis, bibliographic coupling, and direct citation:which citation approach represents the research front most accurately?[J] Journal of the American Society for Information Science and Technology, 2010, 61(12):2389-2404.
[14] CHANG Y W, HUANG M H, LIN C W. Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses[J]. Scientometrics, 2015, 105(3):2071-2087.
[15] ŠUBELJ L, JAN V E N, LUDO W. Clustering scientific publications based on citation relations:a systematic comparison of different methods[J/OL]. PLOS ONE, 2016, 11(4):e0154404[2017-05-04]. http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0154404&type=printable.
[16] JAB?ON'SKA-SABUKA M, SITARZ R, KRASLAWSKI A. Forecasting research trends using population dynamics model with Burgers' type interaction[J]. Journal of informetrics, 2014, 8(1):111-122.
[17] LIU X, JIANG T T, MA F C. Collective dynamics in knowledge networks:emerging trends analysis[J]. Journal of informetrics, 2013, 7(2):425-438.
[18] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Physical review E, 2004, 70(6):066111.
[19] BIGLU M H. The influence of references per paper in the SCI to impact factors and the Matthew effect[J]. Scientometrics, 2008, 74(3):453-470.
文章导航

/