收稿日期: 2016-09-20
修回日期: 2017-02-09
网络出版日期: 2017-03-05
基金资助
本文系国家自然科学基金项目"科研团队动态演化规律"(项目编号:71273196)研究成果之一。
A Research of Characters and Identifications of Roles Among Research Groups Based on the Bow-Tie Model
Received date: 2016-09-20
Revised date: 2017-02-09
Online published: 2017-03-05
[目的/意义] 在科学研究中,科研团队通过学术交流互动推动着科学进步。以计算语言学领域为例,识别科学领域中科研团队的角色并探究其特征。[方法/过程] 通过构建机构作者合作网络,运用社群识别算法发现科研团队,结合论文引用关系构建科研团队引证网络,基于蝴蝶结模型和网络位置理论划分出领导者、中介者、追随者和孤立者等4种角色的科研团队。[结果/结论] 不同角色的科研团队在成员数量、发文量、合作强度等3个方面具有不同的特征。如领导者角色的团队数量最少而平均规模较大,追随者角色团队数量最多而团队规模较小,中介者团队合作密度与团队的发文量之间存在着显著的负相关关系,孤立者角色的团队与其他团队几乎不存在引证和被引关系。
李纲 , 柳明飞 , 吴青 , 毛进 . 基于蝴蝶结模型的科研团队角色识别及其特征研究[J]. 图书情报工作, 2017 , 61(5) : 87 -94 . DOI: 10.13266/j.issn.0252-3116.2017.05.012
[Purpose/significance] In scientific research, research groups promote the advancement of science through academic exchanges and interaction. This paper recognizes the roles of scientific research groups and explores their features based on a case study of computational linguistics. [Method/process] Firstly, combining community identification algorithm, this paper constructed the corporate author cooperative network to identify research groups. Secondly, the citation network of research groups was built based on citation relationship. Then, this paper identified leaders, agents, followers and isolated four roles of the research teams by combining the Bow-Tie model and the network positional relationship theory. [Result/conclusion] Lastly, the different features of four roles of research groups were revealed by the number of members, issued amount and cooperation intensity. For example, the number of leader role is the least and the average is larger. The number of follower role is the largest and average is smaller. There is a significant correlation between the density and the results in agents. The groups of isolated have no correlation with others.
Key words: research groups; community discover; group role; Bow-Tie model
[1] MARTIN J. Can organizational culture be managed?[M]//FROST P J, MOORE L R, LOUIS M R, et al. Organizational culture. Beverly Hills:Sage, 1985:95-98.
[2] 唐磊, 刘欢, 文益民, 等. 社会计算:社区发现和社会媒体挖掘[M]. 北京:机械工业出版社, 2012.
[3] LI Z, ZHU T, WANG H. A study on the influencing factors of the intention to share tacit knowledge in the university research team[J]. Journal of software, 2010, 5(5):538-545.
[4] 李纲, 李春雅, 李翔. 基于社会网络分析的科研团队发现研究[J]. 图书情报工作, 2014, 58(7):63-70.
[5] BETTENHAUSEN K L. Five years of groups research:what we have learned and what needs to be addressed[J]. Journal of management, 1991, 17(2):345-381.
[6] ABOELELA S W, MERRILL J A, CARLEY K M, et al. Social network analysis to evaluate an interdisciplinary research center[J]. Journal of research administration, 2007, 38(1):61-75.
[7] HOOFF B V D, RIDDER J A D. Knowledge sharing in context:the influence of organizational commitment, communication climate and CMC use on knowledge sharing[J]. Journal of knowledge management, 2004, 8(6):117-130.
[8] 蔡翔, 舒勇, 李硕. 基于团队氛围的知识共享与服务创新互动关系研究[J]. 技术经济与管理研究, 2010(2):56-59.
[9] BRODER A, KUMAR R, MAGHOUL F, et al. Graph structure in the web[J]. Computer networks, 2000, 33(1):309-320.
[10] ORTEGA J L, AGUILLO I F. Interdisciplinary relationships in the Spanish academic web space:a webometric study through networks visualization[J]. Cybermetrics, 2007, 11(1). 4-9.
[11] MA H W, ZENG A P. The connectivity structure, giant strong component and centrality of metabolic networks[J]. Bioinformatics, 2003, 19(11):1423-1430.
[12] CSETE M, DOYLE J. Bow ties, metabolism and disease[J]. TRENDS in biotechnology, 2004, 22(9):446-450.
[13] 周秋菊, 杨立英, 岳婷,等. 基于期刊同被引和互引网络的学科结构和知识流动研究[J]. 情报杂志, 2014, 33(8):84-91.
[14] MIZRUCHI M S. Social network analysis:recent achievements and current controversies[J]. Acta sociologica, 1994, 37(4):329-343.
[15] MIZRUCHI M S. Cohesion, equivalence, and similarity of behavior:a theoretical and empirical assessment[J]. Social networks, 1993, 15(3):275-307.
[16] FRIEDKIN N E. Structural cohesion and equivalence explanations of social homogeneity[J]. Sociological methods & research, 1984, 12(3):235-261.
[17] 刘军. 整体网分析讲义[M]. 上海:上海人民出版社, 2009.
[18] BURT R S. Positions in networks[J]. Social forces, 1976, 55(1):93-122.
[19] WASSERMAN S, FAUST K. Social network analysis:methods and applications[M]. Cambridge:Cambridge University Press, 1994.
[20] 翁顺裕. 探讨技术网络之社群结构与位置关系——以保险商业方法专利为例[J]. 管理学报, 2010, 27(5):437-458.
[21] SEGLEN P O, AKSNES D W. Scientific productivity and group size:a bibliometric analysis of Norwegian microbiological research[J]. Scientometrics, 2000, 49(1):125-143.
[22] REY-ROCHA J, GARZÓN-GARCÍA B, MARTÍN-SEMPERE M J. Scientists' performance and consolidation of research teams in Biology and Biomedicine at the Spanish Council for Scientific Research[J]. Scientometrics, 2006, 69(2):183-212.
[23] NEWMAN M E J. Detecting community structure in networks[J]. The European physical journal B-condensed matter and complex systems, 2004, 38(2):321-330.
[24] CLAUSET A. Finding local community structure in networks[J]. Physical review E, 2005, 72(2):026132.
[25] SCHUETZ P, CAFLISCH A. Multistep greedy algorithm identifies community structure in real-world and computer-generated networks[J]. Physical review E, 2008, 78(2):1-7.
[26] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical review E, 2004, 69(2):1-15.
[27] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics theory & experiment, 2008, 30(2):155-168.
[28] DE NOOY W, MRVAR A, BATAGELJ V. Exploratory social network analysis with Pajek[M].Cambridge:Cambridge University Press, 2011.
[29] 邱均平. 信息计量学[M].武汉:武汉大学出版社, 2007.
/
〈 | 〉 |