知识组织

基于主题关联的知识演化路径识别研究——以3D打印领域为例

  • 祝娜 ,
  • 王芳
展开
  • 南开大学商学院信息资源管理系 天津 300071
祝娜(ORCID:0000-0002-8425-1231),博士研究生。

收稿日期: 2016-01-13

  修回日期: 2016-02-20

  网络出版日期: 2016-03-05

基金资助

本文系国家社会科学基金重大项目"我国网络社会治理研究"(项目编号:14ZDA063)研究成果之一。

Identification of Knowledge Evolutionary Path Based on Topic Relevance:Taking the Case of 3D Printing Field

  • Zhu Na ,
  • Wang Fang
Expand
  • Department of Information Resources Management, Business School, Nankai University, Tianjin 300071

Received date: 2016-01-13

  Revised date: 2016-02-20

  Online published: 2016-03-05

摘要

[目的/意义]科技创新需要快速发现特定科技领域中关键知识衍生与演化的路径,探索未来的知识创新趋势,为此,有必要对知识演化路径进行动态可视化研究。[方法/过程]从主题关联的角度入手,以3D打印领域为例,基于LDA识别出科技创新主题并进行分阶段细化分析,探测主题集群内部与外部的关联强度,识别出主题不同生命周期的演化能力及其演化类型。[结果/结论]实验结果表明,该方法从主题关联的角度入手,构建了基于时间序列的知识演化路径,丰富了知识管理和信息计量的理论研究方法,在实践上则有助于探测科技创新知识。

本文引用格式

祝娜 , 王芳 . 基于主题关联的知识演化路径识别研究——以3D打印领域为例[J]. 图书情报工作, 2016 , 60(5) : 101 -109 . DOI: 10.13266/j.issn.0252-3116.2016.05.015

Abstract

[Purpose/significance] The research of static visualization on the knowledge evolutionary path has been unable to meet the needs of knowledge management, knowledge innovation and technological development.[Method/process] From the perspective of topics relevance, taking the case of 3D printing field, this paper identifies the scientific and technological innovation topics based on the LDA model and makes detailed analysis in every phase, probes the internal and external association strength of the topic clusters, and identifies the evolution ability and evolution type of topics in different life cycle.[Result/conclusion] Experimental results show that the method can build the knowledge evolutionary path based on the time series from the perspective of topic relevance. It can enrich the research methods of knowledge management and information measurement and help detecting the technological innovation in the practice.

参考文献

[1] NALLAPATI R, MCFARLAND D A, MANNING C D. Topicflow model:unsupervised learning of topic-specific influences of hyperlinked documents[C]//International conference on artificial intelligence and statistics. Boston:MIT Press,2011:543-551.
[2] CUI W, LIU S, TAN L, et al. Textflow:towards better understanding of evolving topics in text[J]. IEEE transactions on visualization & computer graphics, 2011, 17(12):2412-2421.
[3] HAVRE S, HETZLER E, WHITNEY P, et al. ThemeRiver:visualizing thematic changes in large document collections[J]. IEEE transactions on visualization and computer graphics. 2002, 8(1):9-20.
[4] CHI E H. Improving Web usability through visualization[J]. Internet computing, 2002, 6(2):64-71.
[5] [EB/OL].[2015-01-10].http://www.worldwidetelescope.org/.
[6] [EB/OL].[2015-01-10].http://www.wolframalpha.com/.
[7] 祝娜,王效岳,杨京,等. 基于LDA的科技创新主题语义识别研究[J]. 图书情报工作,2015,59(14):126-134.
[8] 黄鲁成,唐月强,吴菲菲,等. 基于文献多属性测度的新兴主题识别方法研究[J]. 科学学与科学技术管理,2015(2):34-43.
[9] 范云满,马建霞.基于LDA与新兴主题特征分析的新兴主题探测研究[J].情报学报,2014,33(7):698-711.
[10] SARACEVIC T. Relevance:a review of and a framework for the thinking on the notion in information science[J]. Journal of the American Society for Information Science, 1975, 26(6):321-343.
[11] 雷雪,侯人华,曾建勋. 关联规则在领域知识推荐中的应用研究[J]. 情报理论与实践,2014(12):67-70,66.
[12] 高继平,丁堃,潘云涛,等.知识关联研究述评[J].情报理论与实践,2015,38(8):135-140.
[13] 胡昌平,陈果.层次视角下概念知识网络的三元关系形态研究[J].图书情报工作,2014,58(4):11-16.
[14] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京. 清华大学出版社, 2006.
[15] 赵蓉英.知识网络研究(Ⅱ)——知识网络的概念、内涵和特征[J].情报学报,2007,26(3):470-476.
[16] 赵蓉英,邱均平.知识网络研究(Ⅰ)——知识网络概念演进之探究[J].情报学报,2007,26(2):198-209.
[17] 马费成,刘向.知识网络的演化(Ⅰ):增长与老化动态[J].情报学报,2011,30(8):787-795.
[18] 马费成,刘向.知识网络的演化(Ⅲ):连接机制[J].情报学报,2011,30(10):1015-1021.
[19] 周晔,潘美娟,周源,等.社会网络分析在专利知识网络中的应用[J].科技进步与对策,2015(18):138-144.
[20] RACOORI B, COHEN A B, SUN J, et al. Robustness of optimal synchronization in real networks[J]. Physical review letters, 2011, 107(3):034102.
[21] CHEN D, LV L, SHANG M S, et al. Identifying influential nodes in complex networks[J]. Physica a:statistical mechanics and its applications, 2012, 391(4):1777-1787.
[22] LV L, PAN L, ZHOU T, et al. Toward link predictability of complex networks[J]. Proceedings of the National Academy of Sciences, 2015, 112(8):2325-2330.
[23] 祝娜,王效岳,白如江. 科技创新路径识别研究进展:方法与工具[J]. 图书情报工作,2014,58(13):132-139.
[24] BLEI D M, NG A Y, Jordan M I. Latent dirichletallocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[25] YAO L, MIMNO D, McCallum A. Efficient methods for topic model inference on streaming document collections[C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. Paris:ACM, 2009:937-946.
[26] MANN G S, MIMNO D, McCallum A. Bibliometric impact measures leveraging topic analysis[C]//Proceedings of the 6th ACM/IEEE-CS joint conference.New York:ACM, 2006:65-74.
[27] TU Y N, SENG J L. Indices of novelty for emerging topic detection[J]. Information processing & management, 2012, 48(2):303-325.
[28] ECK N J, WALTMAN L. How to normalize cooccurrence data? an analysis of some well-known similarity measures[J]. Journal of the American Society for Information Science and Technology, 2009, 60(8):1635-1651.
[29] COULTER N, MIBARCH I, KONDA S. Software engineering as seen through its research literature:a study in co-word analysis[J]. Journal of the American Society for Information Science, 1998, 49(13):1206-1223.
[30] CALLON M, CoOUTIAL J P, LAVILLE F. Co-word analysis as a tool for describing the network of interactions between basic and technological research:the case of polymer chemsitry[J]. Scientometrics, 1991, 22(1):155-205.
[31] SALTON G, McGill M J. Introduction to modern information retrieval[J]. McGraw-Hill,1986,41(4):305-306.
[32] SMALL H. The relationship of information science to the social sciences:a co-citation analysis[J]. Information processing & management, 1981, 17(1):39-50.
[33] COBO M J, LÓPEZ-HERRERA A G, HERRERA-VIEDMA E, et al. SciMAT:a new science mapping analysis software tool[J]. Journal of the American Society for Information Science and Technology, 2012, 63(8):1609-1630.
[34] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4.
[35] 梁瑛,邹小筑,陈雪. 基于HistCite的文献计量学可视化分析——以增材制造(3D打印)领域为例[J]. 图书馆学刊,2015(5):132-135.
[36] 李梦茹,董洁,扆铁梅. 基于文献计量学的3D打印技术发展趋势研究[J]. 图书情报工作,2015(S1):170-172,154.
[37] HO C M B, NG S H, YOON Y J. A review on 3D printed bioimplants[J]. International journal of precision engineering and manufacturing, 2015, 16(5):1035-1046.
[38] CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of biological engineering, 2015, 9(1):1-14.

文章导航

/