[目的/意义]构建国史知识检索平台,提高用户获取国史知识的效率,促进国史宣传和教育。[方法/过程]提出基于本体的国史知识检索平台构建思路与总体框架,在构建国史本体知识库的基础上,采用Neo4j数据库作为RDF数据仓储,创建基于Solr的实例索引、三元组索引和词条索引,针对多种检索需求设计实现检索引擎的执行流程、检索式构造方法以及查询处理算法,并为国史知识展示设计可视化实现方式。[结果/结论]构建国史知识检索平台,提供实体检索、查询问答、关联检索、时序检索及语义资源浏览等检索与浏览服务。该平台框架及关键技术实现方案可为面向领域知识的深度检索服务提供重要参考。
[Purpose/significance]This paper aims to build a historic knowledge retrieval platform, improve the efficiency access for users to history of the People's Republic of China, and promote its publicity and education.[Method/process]It proposes the construction idea and framework of the knowledge retrieval platform based on historic ontology of the People's Republic of China.Based on the ontology knowledge base, this platform uses Neo4j database as data storage, creates three index based on Solr, including instance index, triple index and text item index.For various retrieval demands, the execution process of retrieval engine, construction method of retrieval expression, query processing algorithm and knowledge visualization are designed and implemented.[Result/conclusion]The knowledge retrieval platform has been constructed, which provides entity search, query answering, relevance search, temporal retrieval and semantic resources browsing services.Its framework and implement of key technologies can provide an important reference for depth retrieval service on other domain knowledge.
[1] Kngine[EB/OL].[2015-03-10].http://www.baike.com/wiki/Kngine.
[2] WolframAlpha[EB/OL].[2015-05-10] http://baike.baidu.com/link?url=7hCseBbIipm9Xo0xOeMo7jVuCrgcUMWTO7F-yW7lUr9YkjUw7_WmG3_i9yeyiRAoRVCvNCPbD6JxzNfyJ4ET6_.
[3] Singhal A.Introducing the Knowledge Graph: Things, Not Strings[EB/OL].[2013-04-10].http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html.
[4] 张阔.从搜索信息到搜索知识——技术架构[EB/OL].[2013-03-26].http://weibo.com/1870490225/zbzDwq5TF#_rnd1435219297630.
[5] 王昊奋.大规模知识图谱技术[EB/OL].[2014-10-12].http://blog.sciencenet.cn/home.php/fgcfmt/home.php?mod=space&uid=1225851&do=blog&id=801901.
[6] Tummarello G, Delbru R, Oren E.Sindice.com: Weaving the Open Linked Data[C]//Proceedings of 6th International Semantic Web Conference.Berlin:Springer,2007: 552-565.
[7] Wang Haofen,Liu Qiaoling,Penin T, et al.Semplore: A scalable IR approach to search the Web of data[J].Web Semantics: Science, Services and Agents on the World Wide Web, 2009, 7(3): 177-188.
[8] Damljanovic D, Agatonovic M, Cunningham H.FREyA: An interactive way of querying linked data using natural language[C]//Proceedings of ESWC 2011 Workshops Berlin:Springer, 2012: 125-138.
[9] Freitas A,Oliveira J G, O'Riain S, et al.Querying linked data using semantic relatedness: A vocabulary independent approach[C]//Proceedings of 16th International Conference Applications of Natural Language to Information Systems.Berlin:Springer, 2011:40-51.
[10] Abacha A, Zweigenbaum P.MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies[J].Information Processing and Management, 2015, 51(3):570-594.
[11] 孙辉, 雷枫.中华人民共和国史本体构建初探[J].现代情报,2014,34(2):32-42.
[12] 洪娜, 朱凯, 王军辉,等.利用RelFinder实现生物医学语义关系发现[J].情报杂志,2013,32(4):142-148.