知识组织

关联数据驱动的查询扩展技术研究

  • 田野 ,
  • 杨眉 ,
  • 祝忠明 ,
  • 张静蓓
展开
  • 1. 上海交通大学图书馆 上海 200240;
    2. 中国科学院兰州文献情报中心 兰州 730070;
    3. 上海外国语大学图书馆 上海 201620
田野(ORCID:0000-0001-5335-2673),助理馆员,硕士,E-mail:ytian@lib.sjtu.edu.cn;杨眉(ORCID:0000-0002-4282-6738),副研究员,博士;祝忠明(ORCID:0000-0002-2365-3050),研究员,博士生导师;张静蓓(ORCID:0000-0002-2439-5049),助理馆员,硕士。

收稿日期: 2014-11-03

  修回日期: 2015-01-15

  网络出版日期: 2015-02-20

Research of Linked Data-driven Query Expansion

  • Tian Ye ,
  • Yang Mei ,
  • Zhu Zhongming ,
  • Zhang Jingbei
Expand
  • 1. Shanghai Jiaotong University Library, Shanghai 200240;
    2. The Lanzhou Branch of National Science Library, Chinese Academy of Sciences, Lanzhou 730000;
    3. Shanghai International Studies University Library, Shanghai 201620

Received date: 2014-11-03

  Revised date: 2015-01-15

  Online published: 2015-02-20

摘要

[目的/意义] 针对当前查询扩展技术面临的瓶颈,提出一种关联数据驱动的查询扩展方法,改善检索系统的查全率、查准率。[方法/过程] 将扩散激活理论应用到关联数据集中,使得在输入查询词搜索潜在语义实体时,对提取的查询词的语义特征在知识库中进行有特定机制的扩散和激活,最后对这些语义关联的候补概念进行收集,并利用推理机制进行筛选,得到更优的概念集。[结果/结论] 该方法能有效提高检索系统的查全率、查准率,证明了本文提出的技术的可行性、有效性。

本文引用格式

田野 , 杨眉 , 祝忠明 , 张静蓓 . 关联数据驱动的查询扩展技术研究[J]. 图书情报工作, 2015 , 59(4) : 122 -128 . DOI: 10.13266/j.issn.0252-3116.2015.04.018

Abstract

[Purpose/significance] The current query expansion faced technology bottleneck,this paper presented a linked data-driven query expansion to improve retrieval system's recall precision.[Method/process] Applied the spreading activation model to the linked data graph. When input query words and searched for potential semantic meaning of query terms, there was a specific feature extraction mechanism of diffusion and activation in the knowledge base. Finally the candidate concepts for these semantic association were collected.[Result/conclusion] This method can improve retrieval system's recall precision. The technical feasibility and effectiveness was demonstrated.

参考文献

[1] Robertson S E, Jones K S. Relevance weighting of search terms[J]. Journal of the American Society for Information science, 1976, 27(3): 129-146.
[2] Aggarwal N,Buitelaar P.Query expansion using Wikipedia and DBpedia[C]//CLEF 2012 Evaluation Labs and Workshop.Rome:springer,2012:174-183.
[3] Augenstein I,Gentile A L,Norton B,et al.Mapping keywords to linked data resources for automatic query expansion[M].Springer: Berlin Heidelberg,2013:101-112.
[4] 王魁,王安胜.认知心理学[M].1992.北京:北京大学出版社, 1992年.
[5] Crestani F.Application of spreading activation techniques in information retrieval[J].Artificial Intelligence Review,1997,11(6):453-482.
[6] Ziegler C N,Lausen G.Spreading activation models for trust propagation[C]//Proceedings of the 2004 IEEE International Conference .Taipei:IEEE,2004: 83-97.
[7] Alani H, O'Hara K,Shadbolt N.Ontocopi: Methods and tools for identifying communities of practice[C]//Proceedings of the IFIP 17thWorld Computer Congress-TC12 Stream on Intelligent Information Processing.Montréal:springer,2002:225-236.
[8] Rocha C,Schwabe D,Aragao M P.A hybrid approach for searching in the semantic Web[C]//Proceedings of the 13th International Conference on World Wide Web.Rio de Janeiro:ACM,2004:374-383.
[9] 潘建国.基于语义的用户建模技术与应用研究[D].上海:上海大学, 2009.
[10] Fernandez-Amoros D,Gil R H, Somolinos J A C,et al.Automatic word sense disambiguation using cooccurrence and hierarchical information[M].Berlin:Springer,2010:60-67.
[11] Miller G A. WordNet: A lexical database for English[J].Communications of the ACM, 1995,38(11): 39-41.
[12] WordNet domains [EB/OL].[2014-12-20].http://wndomains.itc.it/.
[13] Nickel M,Tresp V,Kriegel H P. Factorizing YAGO:Scalable machine learning for linked data[C]//Proceedings of the 21st International conference on World Wide Web.Lyon:ACM,2012: 271-280.

文章导航

/