收稿日期: 2014-11-04
修回日期: 2014-12-20
网络出版日期: 2015-01-05
基金资助
本文系国家自然科学基金项目"面向电子商务生态平衡的目录导购机制研究"(项目编号:71373015)研究成果之一。
Modeling E-commerce User Session Behaviors Based on Click-through Sequences
Received date: 2014-11-04
Revised date: 2014-12-20
Online published: 2015-01-05
[目的/意义] 鉴于已有基于点击流的用户模型大多简单地采用页面类型序列代替行为序列,提出一种根据点击流访问页面序列到用户行为的映射方案,解决用户行为建模的问题。[方法/过程] 本文在分析网页URL参数、页面内容等特征的基础上,以81 759个电商用户会话为测试样本,提出并实现从页面到用户行为的映射方法,给出一种依据原始日志建立用户行为序列来描述会话的方案。[结果/结论] 分析反映出在会话层面上已有研究不易得到的行为特征,得到6类具备不同行为模式的会话:功能探索会话、卖家管理会话、营销推动会话、资料管理会话、商品浏览会话、检索依赖会话。基于点击流对用户会话建模,可以得出用户会话中行为序列特征,对实现准确营销与推荐具有重要价值。
袁兴福 , 张鹏翼 , 刘洪莲 , 王军 . 基于点击流的电商用户会话建模[J]. 图书情报工作, 2015 , 59(1) : 119 -126 . DOI: 10.13266/j.issn.0252-3116.2015.01.016
[Purpose/significance] Most user session models based on click-through sequences take sequences of the page types, but not users' behaviors. This paper aims to construct a user behavior typology and model user session behaviors using the typology.[Method/process] By analyzing features of URL parameter and pages contents, this paper takes 81 759 e-commerce user session behaviors for examples and proposes a novel approach to model user sessions with E-commerce click-through data by mapping movements from URL to URL to a typology of user behaviors. [Result/conclusion] This approach is tested with a sample of 81 759 user sessions. It recognizes 6 different types of sessions by their behavior sequence patterns. The behavior typology is useful in modeling session behavior and the recognized behavior patterns may be sued for marketing and recommendation.
[1] 纪征. 基于用户兴趣模型的电子商务网站推荐技术比较及启示[J]. 图书情报工作, 2010, 54(16): 138-140, 21.
[2] Montgomery A L, Li Shibo, Srinivasan K, et al. Modeling online browsing and path analysis using clickstream data[J]. Marketing Science, 2004, 23(4): 579-595.
[3] 马晓艳,唐雁. 一种基于用户浏览路径的Web用户聚类方法[J]. 西南师范大学学报(自然科学版), 2009, 34(3): 93-97.
[4] 张波,巫莉莉,周敏. 基于Web使用挖掘的用户行为分析[J]. 计算机科学, 2006(8): 213-214.
[5] Benevenuto F, Rodrigues T, Cha M, et al. Characterizing user behavior in online social networks[C]//Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference. Now York:ACM,2009: 49-62.
[6] Dumais S, Jeffries R, Russell D M, et al. Understanding user behavior through log data and analysis[C]//Ways of Knowing in HCI. New York:Springer,2004:349-372.
[7] Iwata T, Saito K, Yamada T. Modeling user behavior in recommender systems based on maximum entropy[C]//Proceedings of the 16th International Conference on World Wide Web.New York: ACM, 2007.
[8] Lops P, Gemmis M, Semeraro G. Content-based recommender systems: State of the art and trends[M]//Ricci F, Rokach L, Shapira B, et al. Recommender Systems Handbook. New York:Springer, 2011: 73-105.
[9] Agichtein E, Brill E, Dumais S. Improving Web search ranking by incorporating user behavior information[C]//Paper Presented at the Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle:ACM, 2006.
[10] Zhang Yuchen, Chen Weizhu, Wang Dong, et al. User-click modeling for understanding and predicting search-behavior[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2011:1388-1396.
[11] Liu Jiahui, Dolan P, Pedersen E R. Personalized news recommendation based on click behavior[C]//Proceedings of the 15th International Conference on Intelligent User Interfaces.New York:ACM, 2010:31-40.
[12] Büyükçorak S, Karabulut Kurt G, Toprakkiran G. User behavior modeling of voice communications: An empirical study[EB/OL].[2014-12-24].http://onlinelibrary.wiley.com/doi/10.1002/wcm.2491/full.
[13] 顾立平. 用户行为模型驱动个性化服务研究综述[J]. 现代图书情报技术, 2010, 26(10): 1-9.
[14] Ciloglugil B, Inceoglu M. User modeling for adaptive e-Learning systems[M]//Murgante B, Gervasi O, Misra S, et al.Computational Science and Its Applications-ICCSA 2012. Berlin Heidelberg:Springer, 2012:550-561.
[15] 王微微,夏秀峰,李晓明. 一种基于用户行为的兴趣度模型[J]. 计算机工程与应用, 2012, 48(8): 148-151, 199.
[16] 伍大清,阳小华,马家宇,等. 基于隐式反馈的用户兴趣漂移方法[J]. 计算机应用与软件, 2010(9): 88-90.
[17] Moe W W. Buying, searching, or browsing: Differentiating between online shoppersusing in-store navigational clickstream[J]. Journal of Consumer Psychology, 2003, 13(1/2): 29-39.
[18] 徐赟,张盼,丁婕. 只逛不买的电子商务用户分析——以淘宝网为例[J]. 信息系统学报, 2012(1): 64-75.
[19] Yin Hongzhi, Cui Bin, Chen Ling, et al. A temporal context-aware model for user behavior modeling in social media systems[C]//Proceedings of SIGMOD/PODS'14.New York: ACM, 2014.
[20] 朱志国. Web用户使用模式与兴趣挖掘方法研究[M]. 北京:北京师范大学出版社, 2012.
[21] 刘春,梁光磊,谭国平. 基于用户兴趣变化融合的个性化推荐模型[J]. 计算机工程与设计, 2013, 34(8): 2944-2950.
[22] Bucklin R E, Sismeiro C. A model of Web site browsing behavior estimated on clickstream data[J]. Journal of Marketing Research, 2003, 40(3): 249-267.
/
〈 | 〉 |