收稿日期: 2014-09-24
修回日期: 2014-11-20
网络出版日期: 2014-12-05
基金资助
本文系国家自然科学基金项目"基于协同训练策略的不完全标记数据流分类问题研究"(项目编号:61273292)和教育部人文社会科学研究青年基金项目"社会化标注环境下的标签层次关系发现方法研究"(项目编号:13YJCZHO77)研究成果之一.
Tags Co-occurrence Spectral Clustering Method in Social Tagging Environment
Received date: 2014-09-24
Revised date: 2014-11-20
Online published: 2014-12-05
李慧宗 , 胡学钢 , 何伟 , 潘剑寒 . 社会化标注环境下的标签共现谱聚类方法[J]. 图书情报工作, 2014 , 58(23) : 129 -135 . DOI: 10.13266/j.issn.0252-3116.2014.23.020
Based on analyzing the tags co-occurrence, a tags co-occurrence spectral clustering method is presented. The method utilizes the co-occurrence relations of tags to measure their correlation, which could avoid the high dimensional and sparse problems when the tag is represented as vector space model. An integrated approach is designed when co-occurrence similarity among tags is measured, and the tag integrated co-occurrence similarity calculation formula is given. Compared with the traditional approach which uses the individual co-occurrence of tags to measure their similarity singly, the integrated approach considers not only the tag individual co-occurrence similarity, but also the tag common co-occurrence group similarity, which could precisely characterize the similarity among tags. Experimental results show that the tag co-occurrence spectral clustering method based on integrated co-occurrence similarity has a better effect.
Key words: social tagging system; tag co-occurrence; spectral clustering; similarity
[1] Isabella P.Folksonomies:Indexing and retrieval in Web 2.0[M]. Berlin:De Gruyter Saur, 2009:369-374.
[2] 罗鹏程, 陈翀.从大众分类到层次式资源组织体系——利用聚类信息构建标签树[J].图书情报工作, 2013, 57(22):120-125.
[3] Cuzzocrea A.Combining multidimensional user models and knowledge representation and management techniques for making Web services knowledge-aware[J].Web Intelligence and Agent Systems, 2006, 4(3):289-312.
[4] 易明, 操玉杰, 沈劲枝, 等.社会化标签系统中基于密度聚类的Web用户兴趣建模方法[J].情报学报, 2011, 30(1):37-43.
[5] Shepitsen A, Gemmell J, Mobasher B, et al.Personalized recommendation in social tagging systems using hierarchical clustering[C] // Proceedings of the 2008 ACM Conference on Recommender Systems.New York:ACM, 2008:259-266.
[6] Xu Guandong, Zong Yu, Jin Ping, et al.KIPTC: A kernel information propagation tag clustering algorithm[J].Journal of Intelligent Information Systems, 2013:1-18.
[7] Knautz K, Soubusta S, Stock W G.Tag clusters as information retrieval interfaces [C] // Proceedings of the 43rd Hawaii International Conference on System Sciences.Big Island, Hawaii:IEEE Computer Society Press,2010:1-10.
[8] Begelman G, Keller P, Smadja F.Automated tag clustering:Improving search and exploration in the tag space [C] // Collaborative Web Tagging Workshop at WWW2006.Edinburgh:ACM, 2006:15-33.
[9] Cui Jianwei, Liu Hongyan, He Jun, et al.Tagclus:A random walk-based method for tag clustering[J].Knowledge and Information Systems, 2011, 27(2):193-225.
[10] 王萍, 张际平.一种社会性标签聚类算法[J].计算机应用与软件, 2010, 27(2):126-129.
/
〈 | 〉 |