知识组织

微博谣言识别研究

  • 贺刚 ,
  • 吕学强 ,
  • 李卓 ,
  • 徐丽萍
展开
  • 1. 北京信息科技大学网络文化与数字传播北京市重点实验室;
    2. 北京城市系统工程研究中心
贺刚,北京信息科技大学网络文化与数字传播北京市重点实验室硕士研究生,E-mail:hegang_126@126.com;吕学强,北京信息科技大学网络文化与数字传播北京市重点实验室教授,博士;李卓,北京信息科技大学网络文化与数字传播北京市重点实验室讲师,博士;徐丽萍,北京城市系统工程研究中心副研究员,博士。

收稿日期: 2013-09-17

  修回日期: 2013-11-15

  网络出版日期: 2013-12-05

基金资助

本文系国家自然科学基金项目“网页内容真实性评价研究、基于本体的专利自动标引研究”(项目编号:61271304)和北京市教委科技发展计划重点项目暨北京市自然科学基金B类重点项目“面向领域的互联网多模态信息精准搜索方法研究”(项目编号:KZ201311232037)研究成果之一。

Automatic Rumor Identification on Microblog

  • He Gang ,
  • Lü Xueqiang ,
  • Li Zhuo ,
  • Xu Liping
Expand
  • 1. Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science and Technology University, Beijing 100101;
    2. Beijing Research Center of Urban System Engineering, Beijing 100089

Received date: 2013-09-17

  Revised date: 2013-11-15

  Online published: 2013-12-05

摘要

指出微博在传播信息的同时,也夹杂着谣言等虚假消息、不实言论。针对微博谣言传播速度快、影响范围广等特点,深层挖掘微博中的隐含信息,提出符号特征、链接特征、关键词分布特征和时间差等新特征,将微博谣言识别形式化为分类问题,综合新提取的特征与微博文本特征、用户特征和传播特征构建多个特征模板,利用SVM分类学习方法对微博进行分类,识别结果可有效辅助人们更好、更快地识别谣言。实验结果表明,在基本特征的基础之上,新提出的特征能有效提高微博谣言识别的正确率。

本文引用格式

贺刚 , 吕学强 , 李卓 , 徐丽萍 . 微博谣言识别研究[J]. 图书情报工作, 2013 , 57(23) : 114 -120 . DOI: 10.7536/j.issn.0252-3116.2013.23.019

Abstract

Microblog not only disseminates information, but also is mingled with rumors and false news. In view of microblog rumors rapidly spreading with wide scope of influence, new features such as symbol, links, keywords distribution and delta-T are proposed by deeply mining the feature information implied in microblog. Rumor identification is formulated as classification problem. Different feature templates are built with new proposed features and classic features like text features, user features and propagation features of microblog. Then SVM is used to classify microblog to help effectively identify rumors. The experimental results suggest that the new features proposed based on the basic ones significantly promotes the overall accuracy of rumor identification.

参考文献

[1] 胡钰.大众传播效果[M].北京:新华出版社, 2000:120-121.
[2] Castillo C, Mendoza M, Poblete B.Information credibility on Twitter[C]//Proceedings of the 20th International Conference on World Wide Web. New York:ACL, 2011: 675-684.
[3] Qazvinian V, Rosengren E, Radev D R, et al.Rumor has it: Identifying misinformation in microblogs[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh:ACL, 2011:1589-1599.
[4] Mendoza M, Pdblete B, Castillo C. Twitter under crisis: Can we trust what we RT?[C]//Proceedings of the First Workshop on Social Media Analytics.New York:ACL, 2010:71-79.
[5] Takahashi T, Igata N. Rumor detection on Twitter[C]//2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS).Kobe:IEEE, 2012: 452-457.
[6] 程亮, 邱云飞, 孙鲁.微博谣言检测方法研究[J].计算机应用与软件, 2013, 30(2):226-228.
[7] 许晓东, 肖银涛, 朱士瑞.微博社区的谣言传播仿真研究[J].计算机工程, 2011, 37(10):272-274.
[8] Yang Fan, Liu Y, Yu X, et al.Automatic detection of rumor on Sina Weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.Beijing:ACM, 2012: 1-7.
[9] 蒋盛益, 陈东沂, 庞观松, 等.微博信息可信度分析研究综述[J].图书情报工作, 2013, 57(12):136-142.
[10] 任一奇, 王雅蕾, 王国华, 等.微博谣言的演化机理研究[J].情报杂志, 2012, 31(5):50-54.
[11] Wang A H.Don't follow me: Spam detection in Twitter[C]//Proceedings of the International Conference on Security and cryptography. Athens:SciThePress, 2010:142-151.
[12] 吴凯, 季新生, 刘彩霞.基于行为预测的微博网络信息传播建模[J].计算机应用研究, 2013, 30(6):1809-1812.
[13] 肖汉光, 蔡从中.特征向量的归一化比较性研究[J].计算机工程与应用, 2009, 45(22):117-119.
[14] Zhang Huaping, Yu Hongkui, Xiong Deyi, et al.HHMM-based Chinese lexical analyzer ICTCLAS[OL].[2013-09-20].http://www.docin.wm/p-824199.html.

文章导航

/