知识组织

微内容推荐路径优化的加速遗传算法研究

  • 谭婷婷
展开
  • 国家气象信息中心
谭婷婷,国家气象信息中心工程师,博士,E-mail:ttt.bear@163.com。

收稿日期: 2012-11-12

  修回日期: 2013-03-22

  网络出版日期: 2013-05-05

Research on Accelerating Genetic Algorithm of Micro-content Recommendation Path Optimization

  • Tan Tingting
Expand
  • National Meteorological Information Center, Beijing 100086

Received date: 2012-11-12

  Revised date: 2013-03-22

  Online published: 2013-05-05

摘要

指出随着互联网中以用户创造内容为源的微内容规模迅速增长,微内容的去中心化与碎片化等特性使网民获取信息的难度增加。针对微内容推荐同时受到用户主观偏好与用户感知行为影响这一特征,利用加速遗传算法对信息节点相似度的影响因素,从用户行为、内容偏好、社会网络关系三个方面进行有效融合,构建微内容推荐路径模型算法,并证明该算法的可行性和有效性。

本文引用格式

谭婷婷 . 微内容推荐路径优化的加速遗传算法研究[J]. 图书情报工作, 2013 , 57(09) : 119 -123,134 . DOI: 10.7536/j.issn.0252-3116.2013.09.020

Abstract

The rapid growth of micro content created by users leads to the characteristics of micro content to decentration and fragmentation, which enable users to obtain information more difficult. According to the feature that the micro content recommendation is effected by user subjective preference and perceived behavior, this paper effectively fuses the influencing factors of information nodes similarity from three perspectives of user behavior, content preference and social network relations with the accelerating genetic algorithm. Finally, this paper develops a new model algorithm of micro-content recommendation path optimization based on it, and proves its feasibility and effectiveness.

参考文献

[1] Cms Wiki.MicroContent[EB/OL].[2007-12-06].www.cmswiki.com/tiki-index.php?page=MicroContent.
[2] 刘晓敏.试论网络信息的有序组织[J].情报科学,2000,18(2): 102-104.
[3] Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70.
[4] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
[5] Talabeigi M, Forsati R, Meybodi M R.A hybrid Web recommender system based on cellular learning automata[C]//2010 IEEE International Conference on Granular Computing,2010:453-458.
[6] Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations[C]//Proceedings of the 18th National Conference on Artificial Intelligence(AAAI'02).Edmonton:AAAI Press, 2002:187-192.
[7] Zhao Shiwan,Du Nan,Noniden A,et al. Improved recommendation based on collaborative tagging behaviors[C]//Proceedings of the International Conference on Intelligent User Interfaces. New Mexico: ACM Press,2008: 413-416.
[8] Niwa S,Doi T,Honiden S. Web page recommender system based on folksonomy mining[C]//Proceedings of the Third International Conference on Information Technology:New Generations(ITNG'06),2006: 388-393.
[9] Gemmell J,Shepitsen A, Mobasher B,et al. Personalizing navigation in folksonomies using hierarchical tag clustering[C]//Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery. Heidelberg: Springer-Verlag Berlin,
2008: 196-205.
[10] Soboroff I, Nicholas C. Combining content and collaborationin text filtering[C]//Proceedings of the International Joint Conference on Artificial Intelligence Workshop: Machine Learning for Information Filtering.Stockholm:Morgan-Kaufmann Publishers Inc., 1999.
[11] 易明,邓卫华.基于标签的个性化信息推荐研究综述[J].综述与评论,2011(3):126-128.
[12] 李敏强,寇纪松,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社,2002:17-66.
[13] 金菊良,杨晓华,丁晶. 标准遗传算法的改进方案——加速遗传算法[J]. 系统工程理论与实践,2001,4(4): 8-13.

文章导航

/