情报研究
陈翀, 李楠, 梁冰, 王晨琳, 徐曾旭林, 郑婷婷
[目的/意义]基于成果特征标识学者的学术专长是学者画像的重要任务,对学者分类、评审专家遴选、发现小同行等应用具有重要价值。[方法/过程]首先分析揭示学术专长的因素,用层次分析法构造专长标签权重分配模型;采用TextRank和概念链接技术从中英文成果内容中识别主题术语,结合权重筛选出具有领域共识和专长概括性的词汇作为专长标签。选取获得人才称号的多个领域科研人员,从中文或英文代表成果中提取专长标签,以人才公示中的专长领域作为对照基准,通过人工打分和语义计算评测识别效果。[结果/结论]在被贴中文专长标签的学者中,71.9%的个体的专长描述被认为满意。在被贴英文专长标签的学者中,77.2%的个体的专长描述被认为满意。实验表明提出的学者学术专长识别方法具有合理性。主要创新在于:在中英文不同语种以及是否存在外部知识库的条件下,提出从文献内容中挖掘候选标签词的解决方案;结合计量因素,用多种成果特征筛选专长标签,并提出权重分配的方案;针对评价基准欠缺的问题,提出基于语义计算的方式补充答案,从而扩充评价手段。