专题
刘婧婧,张向民,
2007, 51(12): 11-11.
Traditional Information Retrieval (IR) systems have limitations in improving search performance in today’s information environment. The high recall and poor precision of traditional IR systems are only as good as with the accuracy of search query, which is, however, usually difficult for the user to construct. It is also time-consuming for the user to evaluate each search result. The recommendation techniques having been developed since the early 1990s help solve the problems that traditional IR systems have. This paper explains the basic process and major elements of document recommender systems, especially the two recommendation techniques of content-based filtering and collaborative filtering. Also discussed are the evaluation issue and the problems that current document recommender systems are facing, which need to be taken into account in future system designs. Traditional Information Retrieval (IR) systems have limitations in improving search performance in today’s information environment. The high recall and poor precision of traditional IR systems are only as good as with the accuracy of search query, which is, however, usually difficult for the user to construct. It is also time-consuming for the user to evaluate each search result. The recommendation techniques having been developed since the early 1990s help solve the problems that traditional IR systems have. This paper explains the basic process and major elements of document recommender systems, especially the two recommendation techniques of content-based filtering and collaborative filtering. Also discussed are the evaluation issue and the problems that current document recommender systems are facing, which need to be taken into account in future system designs.